Application of 18F-fluorodeoxyglucose PET/CT radiomic features and machine learning to predict early recurrence of non-small cell lung cancer after curative-intent therapy

医学 接收机工作特性 逻辑回归 随机森林 人工智能 机器学习 肺癌 朴素贝叶斯分类器 标准摄取值 正电子发射断层摄影术 核医学 计算机科学 支持向量机 肿瘤科 内科学
作者
Soo Bin Park,Ki‐Up Kim,Young Woo Park,Jung Hwa Hwang,Chae Hong Lim
出处
期刊:Nuclear Medicine Communications [Lippincott Williams & Wilkins]
卷期号:44 (2): 161-168 被引量:5
标识
DOI:10.1097/mnm.0000000000001646
摘要

To predict the recurrence of non-small cell lung cancer (NSCLC) within 2 years after curative-intent treatment using a machine-learning approach with PET/CT-based radiomics.A total of 77 NSCLC patients who underwent pretreatment 18 F-fluorodeoxyglucose PET/CT were retrospectively analyzed. Five clinical features (age, sex, tumor stage, tumor histology, and smoking status) and 48 radiomic features extracted from primary tumors on PET were used for binary classifications. These were ranked, and a subset of useful features was selected based on Gini coefficient scores in terms of associations with relapsed status. Areas under the receiver operating characteristics curves (AUC) were yielded by six machine-learning algorithms (support vector machine, random forest, neural network, naive Bayes, logistic regression, and gradient boosting). Model performances were compared and validated via random sampling.A PET/CT-based radiomic model was developed and validated for predicting the recurrence of NSCLC during the first 2 years after curation. The most important features were SD and variance of standardized uptake value, followed by low-intensity short-zone emphasis and high-intensity zone emphasis. The naive Bayes model with the 15 best-ranked features displayed the best performance (AUC: 0.816). Prediction models using the five best PET-derived features outperformed those using five clinical variables.The machine learning model using PET-derived radiomic features showed good performance for predicting the recurrence of NSCLC during the first 2 years after a curative intent therapy. PET/CT-based radiomic features may help clinicians improve the risk stratification of relapsed NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iwhsgfes发布了新的文献求助10
1秒前
Aurora发布了新的文献求助10
2秒前
虚拟的钻石完成签到,获得积分10
3秒前
4秒前
chengche发布了新的文献求助10
5秒前
YIFEI发布了新的文献求助10
7秒前
小龅牙吖发布了新的文献求助10
8秒前
ZIS完成签到,获得积分10
9秒前
乐乐应助elous采纳,获得10
11秒前
longlian57完成签到,获得积分10
13秒前
16秒前
嗯哼完成签到 ,获得积分10
18秒前
科研通AI5应助hulala采纳,获得30
20秒前
22秒前
TK完成签到 ,获得积分0
22秒前
SciGPT应助FireRain采纳,获得10
26秒前
积极天思完成签到 ,获得积分10
26秒前
fkdbdy发布了新的文献求助10
27秒前
29秒前
余味应助nini采纳,获得10
36秒前
37秒前
啊强完成签到 ,获得积分10
38秒前
鹏笑完成签到,获得积分10
38秒前
38秒前
机智友蕊完成签到 ,获得积分10
39秒前
阿秋秋秋完成签到 ,获得积分10
39秒前
40秒前
41秒前
yuaner发布了新的文献求助10
41秒前
小精灵发布了新的文献求助10
42秒前
FashionBoy应助开心的帽子采纳,获得10
42秒前
43秒前
dy发布了新的文献求助10
46秒前
47秒前
nnn发布了新的文献求助10
47秒前
48秒前
研友_VZG7GZ应助小精灵采纳,获得10
51秒前
完美世界应助科研通管家采纳,获得10
51秒前
Orange应助科研通管家采纳,获得10
52秒前
哎呦喂喂应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385