An intelligent non-intrusive load monitoring model based on power encoding and convolutional state modules

编码(内存) 计算机科学 国家(计算机科学) 功率(物理) 卷积神经网络 实时计算 嵌入式系统 人工智能 程序设计语言 物理 量子力学
作者
Weiyue Xu,Changhao Jiang,Qihang Zhang,Jianfeng Zheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086210-086210 被引量:2
标识
DOI:10.1088/1361-6501/ad4b55
摘要

Abstract Non-intrusive load monitoring (NILM) identifies device power consumption or on/off states solely based on total power data, which is highly valuable for consumers to understand their appliance usage behavior and take necessary measures to reduce energy consumption, especially for the benefit of energy consumers’ living production. However, a challenge faced by NILM is the tendency to focus excessively on power disaggregation while neglecting the disaggregation of on/off states, leading to lower classification accuracy, particularly owning to imbalanced states. This study proposes a model that integrates the power and on/off states to simultaneously disaggregate the power and device on/off states. The model comprises two main modules: a power encoding module for power disaggregation, and a convolutional state module (CSM) for on/off state disaggregation. The power encoding module utilizes BERT-LSTM and long short-term memory networks for initial energy disaggregation. In contrast, the CSM employs convolutional neural networks for device state disaggregation. The output of the power-encoding module is multiplied by the probability of on/off states to obtain the final power. The proposed model is evaluated using the REDD and UK-DALE datasets. Compared to the baseline models, the results show an improvement in the device state classification average accuracy from 0.948 to 0.957, and a decrease in the average error between the real power and disaggregated power from 26.356 W to 25.108 W. Additionally, real-world experiments conducted using the designed platform for collecting and disaggregating power data achieve an average accuracy of 0.997. The proposed model demonstrates competitiveness in the NILM field and underscores its significance in aiding energy-consumption reduction efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChaiHaobo完成签到,获得积分10
1秒前
zhu发布了新的文献求助10
1秒前
hute发布了新的文献求助10
2秒前
碗碗完成签到,获得积分10
2秒前
2秒前
hsy309发布了新的文献求助10
2秒前
2秒前
执着烧鹅发布了新的文献求助10
3秒前
宇心完成签到,获得积分10
3秒前
赵寒迟发布了新的文献求助10
3秒前
4秒前
棉花不是花完成签到,获得积分10
4秒前
4秒前
JamesPei应助传统的又蓝采纳,获得10
4秒前
FashionBoy应助xiuuu采纳,获得10
4秒前
wpy发布了新的文献求助10
4秒前
科研通AI6应助粥粥采纳,获得10
5秒前
5秒前
施不评发布了新的文献求助10
7秒前
刘秋伶发布了新的文献求助10
7秒前
今后应助感动水杯采纳,获得10
7秒前
聪慧的正豪应助予陆与你采纳,获得10
8秒前
yangzhudi2333完成签到,获得积分10
9秒前
郭郭完成签到,获得积分10
9秒前
9秒前
changping应助白勺采纳,获得10
9秒前
10秒前
情怀应助梦雨星辰采纳,获得10
10秒前
一一完成签到,获得积分10
11秒前
11秒前
Snowy周发布了新的文献求助10
12秒前
小张Tt完成签到,获得积分10
12秒前
lishuai完成签到,获得积分10
12秒前
科研通AI6应助知更采纳,获得10
12秒前
传奇3应助加百莉采纳,获得10
12秒前
李爱国应助刻苦的小虾米采纳,获得10
12秒前
yangzhudi2333发布了新的文献求助10
14秒前
14秒前
爪爪完成签到,获得积分10
14秒前
脑洞疼应助st采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476