Enabling electrical response through piezoelectric particle integration in AA2017-T451 aluminium parts using FSP technology

压电 材料科学 粒子(生态学) 机械工程 复合材料 工程类 地质学 海洋学
作者
Pedro M. Ferreira,David Caçador,Miguel A. Machado,Marta S. Carvalho,Pedro Vilaça,Gonçalo Sorger,Francisco Werley Cipriano Farias,Arthur Ribeiro Figueiredo,Catarina Vidal
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (6): 065037-065037 被引量:5
标识
DOI:10.1088/1361-665x/ad4d45
摘要

Abstract In the field of structural engineering, the integration of smart materials and structural health monitoring (SHM) has given rise to self-sensing materials (SSM), leading to a paradigm shift in SHM. This paper focuses on the interplay between self-sensing capabilities and the piezoelectric properties of lead zirconate titanate (PZT) and barium titanate (BT) in aluminium components. Leveraging Friction Stir Processing (FSP), the study explores the synthesis and performance of SSMs with embedded piezoelectric particles, potentially transforming structural engineering. The paper highlights FSP as a key methodology for incorporating piezoelectric particles into structural materials, showcasing its potential in developing SSMs with enhanced functionalities. A specific focus is placed on integrating PZT and BT particles into AA2017-T451 aluminium parts using FSP, with metallographic assessments and mechanical property evaluations conducted to analyse particle distribution and concentration. This study shows how BT and PZT particles are incorporated into AA2017-T451 aluminium to create a SSM that responds to external stimuli. Under cyclic loading, the SSMs exhibit a linear load-electrical response correlation, with sensibility increasing at lower frequencies. Metallographic analysis shows homogeneous particle distribution, while PZT induces increased brittleness and brittle fractures. Yield strength remains relatively stable, but ultimate strength decreases post-FSP. Hardness variations indicate weaker bonding with PZT particles. Eddy’scurrent testing aligns with hardness profiles, and sensorial characterization reveals a non-linear frequency-sensibility relationship, showcasing the SSMs’ suitability for low-frequency applications, particularly with PZT embedment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
2秒前
riyamao发布了新的文献求助30
3秒前
乐乐应助wddfz采纳,获得10
3秒前
田博文发布了新的文献求助10
3秒前
脑洞疼应助高挑的依白采纳,获得10
3秒前
3秒前
灵巧的斓完成签到,获得积分20
3秒前
5秒前
深夜诗人发布了新的文献求助10
6秒前
kkk发布了新的文献求助10
7秒前
7秒前
所所应助聪明盈采纳,获得10
7秒前
8秒前
星辰大海应助Leexxxhaoo采纳,获得10
8秒前
ndhy发布了新的文献求助10
8秒前
wddfz发布了新的文献求助10
10秒前
脑洞疼应助xjl采纳,获得10
10秒前
讨厌的十九岁完成签到,获得积分10
11秒前
脑洞疼应助霸气店员采纳,获得10
12秒前
难过的踏歌完成签到,获得积分10
12秒前
Loongwhm完成签到,获得积分0
12秒前
mouxq发布了新的文献求助10
12秒前
14秒前
15秒前
红桃EDC完成签到,获得积分10
17秒前
Dmooou完成签到,获得积分10
17秒前
新火应助阿Mark采纳,获得20
19秒前
vague发布了新的文献求助10
20秒前
烟花应助尚尚尚采纳,获得10
21秒前
air-yi完成签到,获得积分0
22秒前
小蘑菇应助巴啦啦采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
昔日完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
zhang完成签到,获得积分10
26秒前
赵鲁唅发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084