MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction

核糖核酸 计算生物学 计算机科学 核酸结构 序列(生物学) 试验装置 人工智能 化学 算法 生物 生物化学 基因
作者
Junkai Wang,Lijun Quan,Zhi Jin,Hongjie Wu,Xuhao Ma,Xuejiao Wang,Jingxin Xie,Deng Pan,Taoning Chen,Tingfang Wu,Qiang Lyu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4995-5006 被引量:2
标识
DOI:10.1109/jbhi.2024.3400521
摘要

This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-modal features using deep learning algorithms. These features include 3D structural properties at the nucleotide base level of the RNA molecule, relational graphs based on overall RNA structure, and rich RNA semantic information. In our investigation, we gathered 851 interactions between RNA and small molecule ligand from the RNAglib dataset and RLBind training set. Unlike conventional training sets, this collection broadened its scope by including RNA complexes that have the same RNA sequence but change their respective binding sites due to structural differences or the presence of different ligands. This enhancement enables the MultiModRLBP model to more accurately capture subtle changes at the structural level, ultimately improving its ability to discern nuances among similar RNA conformations. Furthermore, we evaluated MultiModRLBP on two classic test sets, Test18 and Test3, highlighting its performance disparities on small molecules based on metal and non-metal ions. Additionally, we conducted a structural sensitivity analysis on specific complex categories, considering RNA instances with varying degrees of structural changes and whether they share the same ligands. The research results indicate that MultiModRLBP outperforms the current state-of-the-art methods on multiple classic test sets, particularly excelling in predicting binding sites for non-metal ions and instances where the binding sites are widely distributed along the sequence. MultiModRLBP also can be used as a potential tool when the RNA structure is perturbed or the RNA experimental tertiary structure is not available. Most importantly, MultiModRLBP exhibits the capability to distinguish binding characteristics of RNA that are structurally diverse yet exhibit sequence similarity. These advancements hold promise in reducing the costs associated with the development of RNA-targeted drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yymm完成签到,获得积分10
2秒前
klandcy完成签到,获得积分10
2秒前
xc发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
5秒前
Ricky发布了新的文献求助10
6秒前
Nancy发布了新的文献求助10
6秒前
mmm4完成签到,获得积分10
9秒前
我要向阳而生完成签到 ,获得积分10
13秒前
dpiner应助bc采纳,获得350
14秒前
仁爱水之完成签到 ,获得积分10
15秒前
无奈天亦完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
Ricky完成签到,获得积分10
20秒前
HE完成签到 ,获得积分10
23秒前
study发布了新的文献求助10
23秒前
23秒前
bc应助文件撤销了驳回
23秒前
ardoroso发布了新的文献求助10
24秒前
小二郎应助KIE采纳,获得10
25秒前
啊啊哈哈哈完成签到 ,获得积分10
25秒前
rr发布了新的文献求助10
28秒前
devilito完成签到,获得积分10
29秒前
科研通AI5应助活力的尔蓉采纳,获得10
30秒前
亚亚完成签到 ,获得积分10
30秒前
31秒前
火星上送终完成签到,获得积分10
31秒前
搜集达人应助devilito采纳,获得10
32秒前
小马甲应助无心的无施采纳,获得10
33秒前
勤恳冰彤完成签到 ,获得积分10
39秒前
ZZ完成签到 ,获得积分10
39秒前
桐桐应助ksxx采纳,获得10
40秒前
科研通AI5应助活力的尔蓉采纳,获得10
42秒前
小太阳完成签到,获得积分10
42秒前
44秒前
44秒前
科研通AI2S应助xzy998采纳,获得10
46秒前
kk发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401