IMG-28. AUTOMATIC BRAIN TUMOR VOLUMETRIC ANALYSIS IN MAGNETIC RESONANCE IMAGING GENERALIZABLE TO PEDIATRIC NEURO-ONCOLOGY

磁共振成像 医学 小儿肿瘤学 脑瘤 医学物理学 核医学 放射科 内科学 病理 癌症
作者
Zhifan Jiang,Daniel Capellán-Martín,Abhijeet Parida,Xinyang Liu,Van K. Lam,Hareem Nisar,Austin Tapp,María J. Ledesma‐Carbayo,Syed Muhammad Anwar,Marius George Linguraru
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.365
摘要

Abstract BACKGROUND The prognosis of brain tumors is variable in clinical practice if it only relies on human interpretation of magnetic resonance imaging (MRI). The automatic segmentation of brain tumors in MRI enables quantitative analysis in support of clinical trials and personalized patient care. We developed benchmarked deep learning-based tools that are generalizable to the volumetric quantification of various tumor types across diverse populations. METHODS We participated in the well-established international brain tumor segmentation challenge (BraTS 2023) and benchmarking competition. The challenge made available 4,500 multi-national brain tumor cases with multi-sequence MRIs, including pediatric high-grade gliomas (PED), i.e., high-grade astrocytoma and diffuse midline glioma, and adult gliomas, brain metastases (MET) and intracranial meningiomas (MEN). Each case comprises four MRI volumes: T1, contrast-enhanced T1, T2, and T2-FLAIR. Manual segmentations were provided to establish ground truth for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Our framework used a model ensemble strategy based on two state-of-the-art deep learning models: a convolutional neural network (nnU-Net) and a vision transformer (Swin UNETR) and was tested for broader applicability across multiple tumor types. The framework was trained on 99, 1,000, and 165 cases and validated on 45, 141, and 31 unseen cases for PED, MEN, and MET, respectively. Automatic segmentations were evaluated by lesion-wise volume overlap (Dice similarity score, DSC) and Hausdorff distance (HD). RESULTS In the evaluation on independent unseen test datasets, our automatic tool was ranked first for PED, third for MEN, and fourth for MET volumetric analysis. Our method resulted in PED lesion-wise DSC of 0.733, 0.782, 0.817 and HD (mm) of 75.93, 25.54, 24.18 for ET, TC, and WT, respectively. CONCLUSIONS These brain tumor volumetric analysis tools are readily available to be efficiently tested on diverse datasets. Automatic MRI analysis provides consistent quantitative data for multi-institutional protocols and clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Casson发布了新的文献求助10
3秒前
哎嘤斯坦完成签到,获得积分10
6秒前
西西发布了新的文献求助10
8秒前
可爱的函函应助Kai采纳,获得10
8秒前
10秒前
xiaolang2004完成签到,获得积分10
12秒前
风中梦蕊发布了新的文献求助10
15秒前
17秒前
Owen应助高兴金毛采纳,获得10
18秒前
18秒前
Francisco应助西西采纳,获得10
19秒前
李健的小迷弟应助666采纳,获得10
19秒前
Kai发布了新的文献求助10
21秒前
暮雪云烟发布了新的文献求助10
23秒前
26秒前
活力的妙芙完成签到,获得积分10
29秒前
666发布了新的文献求助10
31秒前
32秒前
32秒前
ZR666888完成签到,获得积分10
33秒前
35秒前
36秒前
快乐水完成签到,获得积分10
36秒前
猪猪女孩发布了新的文献求助30
37秒前
cff发布了新的文献求助10
37秒前
sciexplorer发布了新的文献求助10
40秒前
小马甲应助666采纳,获得10
40秒前
苏silence发布了新的文献求助10
41秒前
Orange应助猪猪女孩采纳,获得10
43秒前
CodeCraft应助暮雪云烟采纳,获得10
43秒前
cff完成签到,获得积分10
45秒前
所所应助执着代曼采纳,获得10
46秒前
47秒前
排骨炖豆角完成签到 ,获得积分10
47秒前
汉堡包应助flysky120采纳,获得10
48秒前
每天都在找完成签到,获得积分10
52秒前
包包琪完成签到 ,获得积分10
59秒前
SciGPT应助那当然采纳,获得10
1分钟前
SYLH应助科研通管家采纳,获得20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322457
关于积分的说明 10210413
捐赠科研通 3037822
什么是DOI,文献DOI怎么找? 1666890
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044