YoloOW: A Spatial Scale Adaptive Real-Time Object Detection Neural Network for Open Water Search and Rescue From UAV Aerial Imagery

计算机科学 目标检测 卷积神经网络 块(置换群论) 特征(语言学) 尺度不变特征变换 比例(比率) 人工智能 特征提取 遥感 计算机视觉 核(代数) 深度学习 模式识别(心理学) 地质学 数学 语言学 哲学 物理 几何学 量子力学 组合数学
作者
Jianhao Xu,Xiangtao Fan,Hongdeng Jian,Chen Xu,Weijia Bei,Qifeng Ge,Teng Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:27
标识
DOI:10.1109/tgrs.2024.3395483
摘要

Personnel and boat detection in Unmanned Aerial Vehicles (UAVs) imagery plays a crucial role in Open Water Search and Rescue Missions. The diverse perspectives and altitudes of UAV images often result in significant variations in the imagery's appearance and dimensions of personnel and boats, and the false detections arising from water surface flares are acknowledged as a great challenge as well. Existing deep learning-based detection methods employ convolutional blocks with fixed kernel sizes to extract features from the imagery at a fixed spatial scale, which will lead to missed and false detections, and severely affect detection accuracy when there are substantial differences in the appearance and size of the target objects. In this paper, a spatial scale adaptive real-time object detection neural network, namely YoloOW, was proposed to tackle the challenge of personnel and boat detection amidst the diverse UAV imagery, which comprises a feature extractor, a feature enhancer, and a postprocessor. The OaohRep convolutional block was proposed as a pivotal component in constructing the YoloOW and applied to the feature extractor and the feature enhancer. Compared with general convolution blocks, the OaohRep convolution block can extract image features across a wide range of spatial scales, show better scale adaptability, and achieve faster detection speed due to its unique merged convolution layer design. OaohRepBi-PAN was proposed in the feature enhancer, which imitated the architecture of the classic algorithm SIFT and was successfully applied to deep learning models, showing better scale adaptability. A novel UAV detection box filter (UDBF) module was proposed in the postprocessor, which can effectively remove false detections caused by water surface flares. Experimental results demonstrate that our YoloOW model achieves 37.18% mAP on the SeaDronesSee dataset, surpassing the baseline by 8.43%. This notable improvement positions our model at the first of the leaderboard. The code will be available at https://github.com/Xjh-UCAS/YoloOW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJ发布了新的文献求助10
刚刚
1秒前
Owen应助zgd采纳,获得10
1秒前
JamesPei应助风趣的弘文采纳,获得10
2秒前
2秒前
lvzhechen完成签到,获得积分10
4秒前
漂亮的寄真完成签到,获得积分10
4秒前
所所应助笨笨的傲晴采纳,获得10
4秒前
铁甲小宝完成签到,获得积分20
5秒前
Owen应助精明的寒天采纳,获得10
6秒前
小宋娘亲发布了新的文献求助10
6秒前
6秒前
外向梦安发布了新的文献求助30
6秒前
顺心寄文完成签到 ,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
tianzml0应助科研通管家采纳,获得10
8秒前
Eyrjilc应助科研通管家采纳,获得20
8秒前
小马甲应助Lze采纳,获得10
8秒前
tianzml0应助科研通管家采纳,获得50
8秒前
ding应助yuki采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4417321
求助须知:如何正确求助?哪些是违规求助? 3898878
关于积分的说明 12125163
捐赠科研通 3544689
什么是DOI,文献DOI怎么找? 1945308
邀请新用户注册赠送积分活动 985486
科研通“疑难数据库(出版商)”最低求助积分说明 881808