Drug Repurposing Using Hypergraph Embedding Based on Common Therapeutic Targets of a Drug

药物重新定位 药品 超图 重新调整用途 嵌入 计算机科学 计算生物学 生物 药理学 人工智能 数学 组合数学 生态学
作者
Hanieh Abbasi,Amir Lakizadeh
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
标识
DOI:10.1089/cmb.2023.0427
摘要

Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗夏旋完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助123采纳,获得10
2秒前
招财不肥发布了新的文献求助10
2秒前
ohh关闭了ohh文献求助
3秒前
3秒前
4秒前
4秒前
JJ发布了新的文献求助10
6秒前
可爱的函函应助黄黄采纳,获得10
6秒前
6秒前
阿卓西完成签到,获得积分10
7秒前
7秒前
祝你开心完成签到,获得积分10
7秒前
霸气奇异果完成签到,获得积分10
7秒前
nan发布了新的文献求助10
8秒前
小明同学发布了新的文献求助10
8秒前
9秒前
行7发布了新的文献求助10
9秒前
9秒前
YangSY发布了新的文献求助10
10秒前
10秒前
11秒前
我是老大应助SN采纳,获得10
11秒前
情怀应助团团采纳,获得30
12秒前
苹果丹烟完成签到,获得积分10
13秒前
jluzz完成签到,获得积分10
15秒前
ding应助山水之乐采纳,获得10
15秒前
YWH完成签到,获得积分10
15秒前
彭于晏应助缓慢珠采纳,获得10
16秒前
Jasper应助科研废物采纳,获得10
16秒前
17秒前
鹿丫丫发布了新的文献求助10
17秒前
18秒前
18秒前
情怀应助莫离采纳,获得10
18秒前
majiko完成签到,获得积分10
19秒前
彭于晏应助美好焦采纳,获得10
19秒前
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838631
求助须知:如何正确求助?哪些是违规求助? 3380977
关于积分的说明 10516656
捐赠科研通 3100565
什么是DOI,文献DOI怎么找? 1707592
邀请新用户注册赠送积分活动 821803
科研通“疑难数据库(出版商)”最低求助积分说明 772980