Unsupervised ground-roll attenuation via implicit neural representations

衰减 计算机科学 地质学 人工智能 物理 光学
作者
Ji Li,Dawei Liu,Mauricio D. Sacchi
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:90 (2): V111-V121 被引量:4
标识
DOI:10.1190/geo2024-0148.1
摘要

ABSTRACT Coherent noise attenuation in land seismic data is particularly challenging, especially when dealing with ground roll. Unlike incoherent noise, ground roll overlaps with reflections in time-space and frequency-wavenumber domains, making it difficult to separate them without distorting the signal. Traditional attenuation methods often struggle with this overlap, leading to a trade-off between preserving the reflections and effectively reducing noise. Recent advances in deep learning offer promising alternatives, but many rely on supervised learning, which requires a substantial amount of paired training data, which is often unavailable in real-world scenarios. Unsupervised approaches, although avoiding the need for labeled data, frequently face issues such as convergence instability and extensive parameter tuning. We develop an unsupervised deep-learning framework for separating reflections from ground roll to address these challenges. Our method leverages the inherent low-frequency bias of implicit neural representations, which emphasizes self-similarity features during training. The network initially learns to represent smoother, flattened events in seismic data before focusing on features with deeper dips and incoherent noise. To enhance the network’s ability to capture the self-similarity of reflections, we apply a normal moveout (NMO) correction to flatten the reflections before using the network to extract these features from the NMO-corrected data. We further incorporate a horizontal derivative regularization term into the loss function. This term penalizes horizontal variations, ensuring a more stable convergence and reducing the burden of parameter tuning, thereby eliminating the need for early stopping. Our approach is validated with synthetic and real land data examples and compared against traditional f-k filtering methods. The results demonstrate its power in effectively attenuating noise while preserving the integrity of seismic reflections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓晓发布了新的文献求助10
1秒前
1秒前
2秒前
ANKAR发布了新的文献求助10
2秒前
2秒前
2秒前
PoKer完成签到,获得积分10
3秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
5秒前
5秒前
哈桑士发布了新的文献求助10
5秒前
5秒前
ycy完成签到,获得积分10
5秒前
Kn发布了新的文献求助10
5秒前
Ava应助ANKAR采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
所所应助pjh采纳,获得10
7秒前
NexusExplorer应助无心的夏烟采纳,获得10
7秒前
orixero应助爱学习的小女孩采纳,获得10
7秒前
神不搞科研完成签到,获得积分10
7秒前
好好好发布了新的文献求助10
8秒前
蔡问钰完成签到,获得积分10
8秒前
8秒前
wendinfgmei发布了新的文献求助10
9秒前
WEI发布了新的文献求助200
9秒前
传奇3应助九黎采纳,获得10
9秒前
orixero应助iaw采纳,获得10
9秒前
任性初夏完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
11秒前
岩松完成签到 ,获得积分10
11秒前
11秒前
11秒前
99发布了新的文献求助10
12秒前
嘿嘿发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648136
求助须知:如何正确求助?哪些是违规求助? 4775011
关于积分的说明 15042974
捐赠科研通 4807191
什么是DOI,文献DOI怎么找? 2570599
邀请新用户注册赠送积分活动 1527359
关于科研通互助平台的介绍 1486404