Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses

免疫疗法 肺癌 精密医学 医学 癌症 癌症治疗 医学物理学 重症监护医学 肿瘤科 人工智能 内科学 计算机科学 病理
作者
Pawan Kedar,Sankha Bhattacharya,Abhishek Kanugo,Bhupendra G. Prajapati
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:32 被引量:2
标识
DOI:10.2174/0109298673347323241119184648
摘要

Abstract: Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer [SCLC] and non-small cell lung cancer [NSCLC]. A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer [NSCLC], targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence [AI] is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life for people battling this tough disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一头猪发布了新的文献求助10
1秒前
英姑应助lynn采纳,获得20
2秒前
樊文慧发布了新的文献求助10
3秒前
曾经二娘发布了新的文献求助10
4秒前
欢呼哑铃应助干羞花采纳,获得20
4秒前
Weiweiweixiao完成签到,获得积分10
5秒前
李健应助三三四采纳,获得10
6秒前
xcc完成签到,获得积分10
6秒前
6秒前
大个应助LB采纳,获得30
7秒前
神明发布了新的文献求助30
7秒前
无花果应助黑裤子熊采纳,获得10
9秒前
bkagyin应助ymu采纳,获得10
9秒前
daladidala发布了新的文献求助10
10秒前
10秒前
11秒前
gqb发布了新的文献求助30
11秒前
11秒前
林月完成签到,获得积分10
12秒前
12秒前
YamDaamCaa应助苏卿采纳,获得30
12秒前
lan199623完成签到,获得积分10
12秒前
13秒前
秋沧海完成签到,获得积分10
14秒前
hohokuz发布了新的文献求助10
14秒前
zhdjj发布了新的文献求助10
14秒前
Azure发布了新的文献求助10
14秒前
FashionBoy应助读书的时候采纳,获得10
15秒前
Ava应助风中听枫采纳,获得10
16秒前
辛L发布了新的文献求助10
16秒前
欢呼哑铃应助violetlishu采纳,获得100
16秒前
彭于晏应助梨子采纳,获得10
17秒前
勤奋尔丝完成签到 ,获得积分10
18秒前
沐雨篱边完成签到 ,获得积分10
18秒前
Liufgui应助粉红大叔采纳,获得20
19秒前
blangel完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097654
求助须知:如何正确求助?哪些是违规求助? 3635346
关于积分的说明 11523239
捐赠科研通 3345637
什么是DOI,文献DOI怎么找? 1838835
邀请新用户注册赠送积分活动 906271
科研通“疑难数据库(出版商)”最低求助积分说明 823595