Quasi-Metric Learning for Bilateral Person-Job Fit

人工智能 计算机科学 公制(单位) 机器学习 计算机视觉 工程类 运营管理
作者
Yingpeng Du,Hongzhi Liu,Hengshu Zhu,Yang Song,Zhi Zheng,Zhonghai Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2025.3538774
摘要

Matching suitable jobs provided by employers with qualified candidates is a crucial task for online recruitment. Typically, candidates and employers have specific expectations in recruitment market, leading them to prefer similar jobs and candidates, respectively. Metric learning provides a promising way to capture the similarity propagation between candidates and jobs. However, existing metric learning technologies rely on symmetric distance measures, which fail to model the asymmetric relationships of bilateral users (i.e., candidates and employers) in the two-way selective process of recruitment scenarios. In addition, the behavior of users (e.g., candidates) is highly affected by the actions and feedback of their counterparts (e.g., employers). These effects can hardly be captured by the existing person-job fit methods which primarily explore homogeneous and undirected graphs. To address these problems, we propose a quasi-metric learning framework to capture the similarity propagation between candidates and jobs while modeling their asymmetric relations for bilateral person-job fit. Specifically, we propose a quasi-metric space that not only satisfies the triangle inequality rule to capture the fine-grained similarity between candidates and jobs, but also incorporates a tailored asymmetric measure to model the two-way selection process of bilateral users in online recruitment. More importantly, the proposed quasi-metric learning framework can theoretically model recruitment rules from similarity and competitiveness perspectives, making it seamlessly align with bilateral person-job fit scenarios. To explore the mutual effects of two-sided users on each other, we first organize candidates, employers, and their different-typed interactions into a heterogeneous relation graph, and then propose a relation-aware graph convolution network to capture the mutual effects of users with their bilateral behaviors. Extensive experiments on several real-world datasets demonstrate the effectiveness of the proposed quasi-metric learning framework and bilateral person-job fit model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu发布了新的文献求助10
1秒前
3秒前
蝃蝀完成签到,获得积分10
3秒前
席涑完成签到,获得积分10
4秒前
4秒前
日出完成签到,获得积分10
4秒前
零吾完成签到 ,获得积分10
7秒前
jennie完成签到 ,获得积分10
8秒前
8秒前
CodeCraft应助xu采纳,获得10
8秒前
日出发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
TT应助科研通管家采纳,获得10
9秒前
淡然冬灵应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
打工牛牛应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
昏睡的蟠桃应助科研通管家采纳,获得200
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
笙陌应助科研通管家采纳,获得10
9秒前
小白应助科研通管家采纳,获得20
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
HEAUBOOK应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
HEAUBOOK应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
HEAUBOOK应助科研通管家采纳,获得10
10秒前
11秒前
武傲翔发布了新的文献求助10
13秒前
13秒前
FOX完成签到,获得积分10
16秒前
osmanthus完成签到,获得积分10
16秒前
小木虫完成签到,获得积分10
16秒前
傻瓜子完成签到,获得积分10
17秒前
能HJY发布了新的文献求助10
17秒前
嗯好22222完成签到 ,获得积分10
17秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728