亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physics-Informed, Deep Double Reservoir Network for Forecasting Boundary Layer Velocity

边界层 边界(拓扑) 地质学 物理 数学 机械 数学分析
作者
Matthew Bonas,David H. Richter,Stefano Castruccio
标识
DOI:10.1080/01621459.2024.2422131
摘要

When a fluid flows over a solid surface, it creates a thin boundary layer where the flow velocity is influenced by the surface through viscosity, and can transition from laminar to turbulent at sufficiently high speeds. Understanding and forecasting the fluid dynamics under these conditions is one of the most challenging scientific problems in fluid dynamics. It is therefore of high interest to formulate models able to capture the nonlinear spatio-temporal velocity structure as well as produce forecasts in a computationally efficient manner. Traditional statistical approaches are limited in their ability to produce timely forecasts of complex, nonlinear spatio-temporal structures which are at the same time able to incorporate the underlying flow physics. In this work, we propose a model to accurately forecast boundary layer velocities with a deep double reservoir computing network which is capable of capturing the complex, nonlinear dynamics of the boundary layer while at the same time incorporating physical constraints via a penalty obtained by a Partial Differential Equation (PDE). Simulation studies on a one-dimensional viscous fluid demonstrate how the proposed model is able to produce accurate forecasts while simultaneously accounting for energy loss. The application focuses on boundary layer data in a water tunnel with a PDE penalty derived from an appropriate simplification of the Navier-Stokes equations, showing improved forecasting by the proposed approach in terms of mass conservation and variability of velocity fluctuation against non-physics-informed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
XZZH发布了新的文献求助50
13秒前
28秒前
32秒前
XZZH完成签到,获得积分10
37秒前
wz发布了新的文献求助10
38秒前
唐泽雪穗应助科研通管家采纳,获得10
40秒前
请吃橘子吧完成签到,获得积分10
42秒前
42秒前
Nidehuogef发布了新的文献求助10
48秒前
50秒前
李健应助Nidehuogef采纳,获得10
58秒前
1分钟前
1分钟前
一一发布了新的文献求助20
1分钟前
华仔应助wz采纳,获得10
1分钟前
1分钟前
yain完成签到 ,获得积分10
1分钟前
wz完成签到,获得积分10
1分钟前
fabricio10完成签到,获得积分10
1分钟前
哈哈哈哈或完成签到,获得积分20
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
一一完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
JamesPei应助满锅采纳,获得10
3分钟前
3分钟前
共享精神应助matrixu采纳,获得30
3分钟前
满锅发布了新的文献求助10
3分钟前
小六九完成签到 ,获得积分10
4分钟前
4分钟前
善学以致用应助叶凡采纳,获得30
4分钟前
邹醉蓝完成签到,获得积分0
4分钟前
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
Lucas应助淡淡十三采纳,获得10
4分钟前
莫春莹完成签到 ,获得积分10
4分钟前
4分钟前
淡淡十三发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077640
求助须知:如何正确求助?哪些是违规求助? 4296671
关于积分的说明 13387255
捐赠科研通 4119172
什么是DOI,文献DOI怎么找? 2255766
邀请新用户注册赠送积分活动 1260104
关于科研通互助平台的介绍 1193513