SDPR: Prescription Recommendation with Syndrome Differentiation in Traditional Chinese Medicine

药方 计算机科学 医学 家庭医学 护理部
作者
Wenjing Yue,Wendi Ji,Xinyu Wang,Xin Ma,Pengfei Wang,Xiaoling Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3525507
摘要

Prescription recommendation is critical for clinical decision support in Traditional Chinese Medicine (TCM), aiming to recommend a herb set based on a patient's symptoms. The core principle of TCM clinical practice, treatment based on syndrome differentiation (SD), follows a four-step progressive process: symptoms to syndromes, therapeutic methods, and herbs. However, existing models oversimplify this process by overlooking therapeutic methods, directly mapping symptoms to herbs or syndromes to herbs, resulting in information loss and reducing the effectiveness of recommended prescriptions. Furthermore, the implicit, sparse, and many-to-many relationships between syndromes and therapeutic methods, coupled with the nonlinear interactions between therapeutic methods and herbs, further hinder the modeling of the complete SD process. To address these challenges, we propose a novel four-partite graph paradigm that explicitly models the four key components of SD and their interactions, preserving critical information at each step and aligning more closely with clinicians' decision-making logic. Building on this, we develop SDPR, an SD-based prescription recommendation model comprising four modules aligned with all SD steps. Then, we integrated them into a multi-task learning framework to fully capture the progressive prescription process. To handle the implicit and complex relationships among syndromes, therapeutic methods, and herbs, we introduce a syndrome-induced pre-training strategy and a therapeutic method-aware contrastive learning framework. Extensive experiments on public and real-world datasets validate SDPR's effectiveness in herb recommendation and prescription retrieval, confirming the strength of the four-partite graph paradigm. Our broader goal is to advance the intelligent development of TCM in healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯内克发布了新的文献求助10
1秒前
iNk应助suye采纳,获得10
2秒前
3秒前
7秒前
7秒前
FashionBoy应助胡宇采纳,获得10
8秒前
8秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
11秒前
旗舰应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Johnson应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
含蓄香氛完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
诸忆雪发布了新的文献求助10
12秒前
陌上尘开完成签到 ,获得积分10
13秒前
张靖雯发布了新的文献求助10
14秒前
缓慢的悒完成签到,获得积分20
15秒前
伟@发布了新的文献求助10
16秒前
16秒前
含蓄香氛发布了新的文献求助10
17秒前
研友_enP05n完成签到,获得积分10
17秒前
自主学习发布了新的文献求助10
18秒前
诸忆雪完成签到,获得积分10
21秒前
zsc668完成签到 ,获得积分10
21秒前
22秒前
无花果应助小鞠采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
任性的白玉完成签到 ,获得积分10
25秒前
曾经凤灵发布了新的文献求助10
26秒前
香蕉友绿发布了新的文献求助10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254916
求助须知:如何正确求助?哪些是违规求助? 3787671
关于积分的说明 11887467
捐赠科研通 3437888
什么是DOI,文献DOI怎么找? 1886732
邀请新用户注册赠送积分活动 937832
科研通“疑难数据库(出版商)”最低求助积分说明 843565