PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images

微卫星不稳定性 计算机科学 人工智能 卷积神经网络 深度学习 相似性(几何) 班级(哲学) 模式识别(心理学) 试验装置 集合(抽象数据类型) F1得分 机器学习 结直肠癌 微调 癌症 图像(数学) 微卫星 医学 内科学 生物 物理 基因 等位基因 程序设计语言 量子力学 生物化学
作者
Jingjiao Lou,Jiawen Xu,Yuyan Zhang,Yuhong Sun,Aiju Fang,Ji‐Xuan Liu,Luis A. J. Mur,Bing Ji
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107095-107095 被引量:18
标识
DOI:10.1016/j.cmpb.2022.107095
摘要

Recent studies have shown that colorectal cancer (CRC) patients with microsatellite instability high (MSI-H) are more likely to benefit from immunotherapy. However, current MSI testing methods are not available for all patients due to the lack of available equipment and trained personnel, as well as the high cost of the assay. Here, we developed an improved deep learning model to predict MSI-H in CRC from whole slide images (WSIs).We established the MSI-H prediction model based on two stages: tumor detection and MSI classification. Previous works applied fine-tuning strategy directly for tumor detection, but ignoring the challenge of vanishing gradient due to the large number of convolutional layers. We added auxiliary classifiers to intermediate layers of pre-trained models to help propagate gradients back through in an effective manner. To predict MSI status, we constructed a pair-wise learning model with a synergic network, named parameter partial sharing network (PPsNet), where partial parameters are shared among two deep convolutional neural networks (DCNNs). The proposed PPsNet contained fewer parameters and reduced the problem of intra-class variation and inter-class similarity. We validated the proposed model on a holdout test set and two external test sets.144 H&E-stained WSIs from 144 CRC patients (81 cases with MSI-H and 63 cases with MSI-L/MSS) were collected retrospectively from three hospitals. The experimental results indicate that deep supervision based fine-tuning almost outperforms training from scratch and utilizing fine-tuning directly. The proposed PPsNet always achieves better accuracy and area under the receiver operating characteristic curve (AUC) than other solutions with four different neural network architectures on validation. The proposed method finally achieves obvious improvements than other state-of-the-art methods on the validation dataset with an accuracy of 87.28% and AUC of 94.29%.The proposed method can obviously increase model performance and our model yields better performance than other methods. Additionally, this work also demonstrates the feasibility of MSI-H prediction using digital pathology images based on deep learning in the Asian population. It is hoped that this model could serve as an auxiliary tool to identify CRC patients with MSI-H more time-saving and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Rencal发布了新的文献求助10
2秒前
成就的外套完成签到,获得积分10
2秒前
安在哉完成签到,获得积分10
2秒前
Miao发布了新的文献求助10
3秒前
研友_Lpawrn发布了新的文献求助10
3秒前
SYLH应助dengy采纳,获得10
4秒前
姜且发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
其实完成签到,获得积分10
5秒前
科研通AI2S应助yusuf采纳,获得10
6秒前
积极的凌波完成签到,获得积分20
6秒前
6秒前
xlh完成签到 ,获得积分10
7秒前
星辰大海应助H1998采纳,获得10
7秒前
乐乐应助轻松雁蓉采纳,获得10
7秒前
xiaoxin发布了新的文献求助10
7秒前
7秒前
Jeux完成签到,获得积分10
8秒前
9秒前
Ther发布了新的文献求助10
9秒前
英姑应助qi采纳,获得10
10秒前
lsq完成签到,获得积分10
10秒前
生动谷蓝发布了新的文献求助50
10秒前
Vegetable_Dog完成签到,获得积分10
10秒前
单hx完成签到 ,获得积分10
10秒前
科研通AI5应助1484采纳,获得10
11秒前
阿辉发布了新的文献求助10
11秒前
Ava应助amumu采纳,获得10
11秒前
大橙子发布了新的文献求助10
12秒前
lucky完成签到,获得积分20
12秒前
317发布了新的文献求助10
12秒前
xusuizi完成签到,获得积分10
12秒前
个木发布了新的文献求助10
12秒前
大模型应助欣然采纳,获得10
13秒前
Chris发布了新的文献求助10
14秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848441
求助须知:如何正确求助?哪些是违规求助? 3391263
关于积分的说明 10566323
捐赠科研通 3111800
什么是DOI,文献DOI怎么找? 1714895
邀请新用户注册赠送积分活动 825524
科研通“疑难数据库(出版商)”最低求助积分说明 775576