Quantitative characterization of micro-scanning imaging aliasing and optical parameter optimization

混叠 抗锯齿过滤器 光传递函数 采样(信号处理) 光学 计算机科学 探测器 滤波器(信号处理) 计算机视觉 物理 数字滤波器 根升余弦滤波器
作者
Chao Zhang,Fafa Ren,Xiaorui Wang,Yangyang Li,Zhenshun Zhao,Yue Li
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (7): 11447-11447
标识
DOI:10.1364/oe.516183
摘要

Imaging aliasing is a common problem in the imaging domain. The aliasing of micro-scanning imaging is difficult to characterize accurately, and the matching relationship between the optical system and micro-scanning sampling is unclear. In this paper, a micro-scanning aliasing analysis model is proposed based on the property of sampling squeeze, in which the transfer functions of the optical system, detector, and digital filter are coupled with the micro-scanning sampling process. First, the imaging aliasing under different micro-scanning sampling modes is evaluated based on the constraint relationship of the transfer functions for each part. The stretch factor of the transfer function under micro-scanning sampling is calculated by utilizing the amount of aliasing. Second, the micro-scanning imaging transfer function under different optical parameters is predicted by the stretch factor, and the results indicate the existence of an optimal F-number that maximizes the micro-scanning performance improvement. Furthermore, the optimal micro-scanning imaging F-numbers for different fill factors are given, and the matching relationship between optical parameters, fill factors and micro-scanning mode is analyzed. Finally, a micro-scanning imaging simulation is performed based on the actual imaging transfer and micro-scanning sampling process. The simulation experiment verifies the accuracy of the micro-scanning aliasing model and gives the consistent test results of the optimal F-number. This paper can provide theoretical support for the matching relationship among micro-scanning imaging parameters, which is of great significance for the refined optimal design of micro-scanning imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孤独雪柳完成签到,获得积分20
3秒前
科研通AI5应助木木三采纳,获得10
3秒前
泥過完成签到 ,获得积分10
4秒前
科研小豪完成签到,获得积分10
4秒前
6秒前
刘媛发布了新的文献求助10
7秒前
wanci应助zy采纳,获得10
7秒前
8秒前
flyabc完成签到,获得积分10
8秒前
传奇3应助HermanCheney采纳,获得10
9秒前
11秒前
mao应助ll采纳,获得10
11秒前
Hello应助qiulong采纳,获得10
14秒前
朵坎温苋发布了新的文献求助30
14秒前
17秒前
18秒前
寻风完成签到,获得积分10
21秒前
21秒前
冰魂应助郭宇采纳,获得10
22秒前
冰魂应助睡睡采纳,获得10
23秒前
23秒前
KinKrit发布了新的文献求助10
24秒前
茶荼发布了新的文献求助10
24秒前
丹丹发布了新的文献求助30
25秒前
积极问晴发布了新的文献求助10
25秒前
29秒前
30秒前
30秒前
烟花应助CYY采纳,获得10
30秒前
脑洞疼应助茶荼采纳,获得10
30秒前
JMchiefEditor发布了新的文献求助10
33秒前
顺其自然_666888完成签到,获得积分10
34秒前
睡睡完成签到,获得积分10
35秒前
35秒前
menxiaomei发布了新的文献求助10
36秒前
jiangchuansm完成签到,获得积分10
36秒前
嘤鸣完成签到,获得积分10
37秒前
38秒前
hmf1995完成签到 ,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976