Multi-objective machine learning for designing enzyme cofactor specificity

辅因子 化学 计算生物学 计算机科学 生物化学 人工智能 生物
作者
Megan K. Taylor,Yun Su,Brian F. Pfleger,Philip A. Romero
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:123 (3): 550a-550a
标识
DOI:10.1016/j.bpj.2023.11.3327
摘要

Many current approaches in chemical engineering and biotechnology involve the construction of synthetic metabolic pathways and networks tailored to produce a desired product. This can often disrupt the natural regulation of cellular reducing power by the over or under consumption of electron-rich cofactors. To achieve optimal flux through these combinatorial pathways, many enzymes need to adopt a cofactor that differs from their native specificity in metabolism. The engineering task of cofactor switching has been attempted before, but has resulted in unintended consequences to an enzyme's catalytic efficiency. Previous methods have also been tedious, often relied on structural knowledge, or have required high-throughput screens. Here, we have developed a machine learning-guided approach to switch cofactor specificity in Rossmann folds—the largest known cofactor binding fold across protein evolution. We applied the model to alcohol-forming fatty acyl reductases (FARs) family to engineer the multimeric, multiple Rossmann fold-containing fatty acyl-CoA reductase (ACR) of M. aquaeolei to favor NADH over its natural preference for NADPH. Our approach leverages known structural information from known enzyme and cofactor interactions as well as protein sequence evolution data to infer high order contacts for cofactor and enzyme specificity. This combination of supervised and unsupervised machine learning models also allows for a sequence-based query, where structural inputs may not be necessary for the model to learn higher order interactions within a given protein's sequence. Using multi-objective optimization, we will optimize for variants with re-engineered cofactor specificity and the retaining of native catalytic activity. We will also expand this model to an increased pool of cofactors to allow for orthogonal cofactors in metabolic pathway design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHH完成签到,获得积分10
1秒前
2秒前
隐形曼青应助lyh采纳,获得10
3秒前
wangxw发布了新的文献求助10
3秒前
cjyyy完成签到,获得积分10
5秒前
Clara凤发布了新的文献求助10
5秒前
欧皇完成签到,获得积分10
6秒前
易琚完成签到,获得积分10
6秒前
8秒前
wangxw完成签到,获得积分10
8秒前
wyl完成签到,获得积分10
9秒前
9秒前
13秒前
ksrcc发布了新的文献求助10
19秒前
科研通AI5应助自然的清涟采纳,获得10
23秒前
韦老虎完成签到,获得积分10
24秒前
司藤完成签到 ,获得积分10
24秒前
27秒前
犹豫汽车完成签到,获得积分10
28秒前
28秒前
可爱的函函应助嘉嘉采纳,获得10
29秒前
菜菜完成签到 ,获得积分10
31秒前
无限语海发布了新的文献求助10
35秒前
35秒前
科研通AI5应助和谐煜祺采纳,获得10
36秒前
小二郎应助雨果的猫采纳,获得10
36秒前
神经娃完成签到,获得积分10
36秒前
36秒前
孤独尔白完成签到,获得积分10
37秒前
斯文败类应助Oliver采纳,获得10
37秒前
张XX完成签到,获得积分10
38秒前
爱吃大米完成签到,获得积分10
38秒前
繁荣的语蝶完成签到 ,获得积分10
38秒前
玄音发布了新的文献求助10
39秒前
zzzzz完成签到,获得积分10
40秒前
健忘蘑菇完成签到,获得积分10
40秒前
41秒前
木一完成签到,获得积分10
41秒前
42秒前
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752