Dual-Stream Attention-TCN for EMG Removal From a Single-Channel EEG

脑电图 计算机科学 对偶(语法数字) 频道(广播) 语音识别 电信 神经科学 心理学 文学类 艺术
作者
Jun Lu,Ruihan Cai,Zhichao Guo,Qiyu Yang,Kan Xie,Shengli Xie
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19575-19588
标识
DOI:10.1109/jiot.2024.3368333
摘要

Long-term and mobile healthcare applications have increased the use of single-channel electroencephalogram (EEG) systems. However, electromyography (EMG) artifacts often disturb EEGs. The lack of spatial correlation, diversity of waveforms, and time-varying overlap make eliminating EMG interference from a single-channel EEG difficult. To overcome these challenges, we create DSATCN, a dual-stream learning model that makes use of multi-level and multi-scale temporal dependencies in different frequency bands to perform robust EEG reconstruction. The first DSATCN stream extracts low-frequency band EEG features with reduced EMG interference. The second stream selectively combines the high-level features of the first stream with its own low-level features to refine the EEG reconstruction across the entire frequency band, lowering the risk of overfitting. Both streams employ a novel attention-based temporal convolution network (ATCN) to adaptively separate the overlapping features of EEGs and EMGs. The ATCN has multiple stages to represent various temporal dependencies at different levels. Each stage consists of multi-scale dilated convolutions and fast Fourier transform modulations, which efficiently enrich the receptive fields and establish global self-attention mechanisms. The stages' outputs are merged by relaxed attentional feature fusion modules, which bridge semantic gaps between features at various levels. Extensive experimental results on three semi-simulated datasets containing 318,700 samples show that the proposed model significantly outperforms the existing methods in EEG reconstruction accuracy. And its computational cost meets the criteria for real-time processing. Our code is available at https://github.com/BaenRH/DSATCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
1秒前
轻易发布了新的文献求助10
1秒前
顺利若山完成签到,获得积分10
1秒前
薛长琴发布了新的文献求助20
2秒前
2秒前
jinmei2025发布了新的文献求助10
2秒前
2秒前
伶俐的雅寒关注了科研通微信公众号
2秒前
清脆的书桃完成签到,获得积分10
3秒前
3秒前
3秒前
jingxu发布了新的文献求助50
3秒前
3秒前
oho完成签到,获得积分10
4秒前
Caroline完成签到 ,获得积分10
5秒前
Yangpc发布了新的文献求助10
5秒前
5秒前
科研通AI6应助MMMMM采纳,获得10
6秒前
Hello应助huaming采纳,获得10
6秒前
stella发布了新的文献求助30
6秒前
6秒前
又甘又刻发布了新的文献求助10
6秒前
Yoyo发布了新的文献求助10
7秒前
所所应助xw采纳,获得10
7秒前
HH发布了新的文献求助30
7秒前
科研通AI6应助西扬采纳,获得10
7秒前
7秒前
8秒前
小五发布了新的文献求助10
8秒前
young发布了新的文献求助10
8秒前
Mine_cherry应助秀丽的莹采纳,获得10
8秒前
天天快乐应助现代水卉采纳,获得10
8秒前
FashionBoy应助彦卿采纳,获得10
9秒前
搜集达人应助xiaochaoge采纳,获得10
9秒前
10秒前
张民鑫完成签到 ,获得积分10
10秒前
10秒前
星辰大海应助老实尔安采纳,获得10
10秒前
3210592发布了新的文献求助10
10秒前
luohan完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498