Physically Driven Self-Supervised Learning and its Applications in Geophysical Inversion

反演(地质) 地球物理学 计算机科学 人工智能 地质学 遥感 地震学 构造学
作者
Yang Yang,Zhuo Wang,Naihao Liu,Jingyu Wang,Shanmin Pang,Rongchang Liu,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:4
标识
DOI:10.1109/tgrs.2024.3368016
摘要

Sparse coding (SC) has been proven effective in various geological tasks, such as seismic time-frequency (TF) analysis and seismic reflection inversion. Nevertheless, it inevitably has several drawbacks, e.g., low computational efficiency and difficulty in parameter selection. Recently, self-supervised learning (SSL) has emerged as a promising alternative to mitigate these issues, offering high computational effectiveness and requiring fewer labels. We suggest a generalized physically driven workflow for geophysical inversion based on SSL and SC, named the physically driven SSL network (PDSSLNet). This generalized PDSSLNet model comprises two main modules. One is the inverse model, generated by convolutional neural networks (CNNs), which can benefit from their high computational effectiveness and strong nonlinear fitting ability. The other one is the forward model based on the SC theory, ensuring the physical meaning of the geophysical applications with high accuracy. Afterward, we provide two typical geological inversion cases to demonstrate the validity and effectiveness of the suggested PDSSLNet, including sparse TF analysis and seismic reflectivity inversion. Three-dimensional (3D) field data volume applications confirm that the proposed inversion workflow may efficiently circumvent the drawbacks of the conventional SC-based approach while maintaining excellent computing efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇潇雨歇发布了新的文献求助10
1秒前
1秒前
misong完成签到 ,获得积分10
1秒前
miemie完成签到,获得积分10
3秒前
3秒前
CipherSage应助布医采纳,获得10
4秒前
JamesPei应助叶宇豪采纳,获得10
4秒前
qikkk完成签到,获得积分10
4秒前
小马甲应助Ayumi采纳,获得30
4秒前
科研通AI5应助ZYX911007采纳,获得10
5秒前
小橙子发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
zhuhaot发布了新的文献求助50
6秒前
终于开始完成签到,获得积分20
8秒前
8秒前
兴奋大马喽完成签到,获得积分10
8秒前
终于开始发布了新的文献求助10
11秒前
ZJX完成签到,获得积分10
11秒前
善学以致用应助meng采纳,获得10
13秒前
上官若男应助隐形黄蜂采纳,获得10
14秒前
外向的纸飞机完成签到,获得积分10
14秒前
14秒前
浅色墨水完成签到,获得积分10
15秒前
Kayla完成签到 ,获得积分10
15秒前
河豚不擦鞋完成签到 ,获得积分10
16秒前
脑洞疼应助小橙子采纳,获得30
17秒前
17秒前
懂梦发布了新的文献求助10
19秒前
Ayumi给Ayumi的求助进行了留言
19秒前
布医发布了新的文献求助10
20秒前
22秒前
斯文败类应助bm采纳,获得10
22秒前
调皮的老王头完成签到,获得积分10
23秒前
23秒前
zho发布了新的文献求助10
23秒前
TAOS完成签到 ,获得积分10
23秒前
647完成签到,获得积分10
26秒前
GAO发布了新的文献求助10
27秒前
Lancelot13发布了新的文献求助10
27秒前
汉堡包应助靖柔采纳,获得10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225