Global Digital Compact: A Mechanism for the Governance of Online Discriminatory and Misleading Content Generation

机制(生物学) 公司治理 数字内容 内容(测量理论) 计算机科学 业务 数学 万维网 物理 数学分析 财务 量子力学
作者
Zhi Li,Wenyi Zhang,Hengtian Zhang,Ran Gao,Xingdong Fang
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:: 1-16 被引量:16
标识
DOI:10.1080/10447318.2024.2314350
摘要

With the continuous development of artificial intelligence (AI), algorithmic discrimination and discriminatory and misleading content (DMC) generated by AI have given rise to many negative effects in cyberspace, such as racial and gender discrimination, misinformation, and so on. The growing concern in society over AI governance urgently necessitates the establishment of an effective mechanism to supervise and govern AI-generated DMC. In this article, the discriminatory and misleading contents of AIGC (Artificial Intelligence Generated Content) were extracted according to Text Classification Model and then classified by Naive Bayesian algorithm. The results showed that under the Global Digital Compact (GDC), countries differed in their degrees of discrimination related to race, gender, religion, and age. The racial discrimination accounted for the highest proportion in the United States, with a score of 0.15; that in Britain and France took up a share of 0.06 and 0.07, respectively; and merely 0.03 in Germany. Discriminatory content of racial discrimination (M1) and gender discrimination (M2) in science and technology industry was relatively low, accounting for 0.05 and 0.08, respectively. Analyzing data within the Global Digital Compact (GDC) illuminates the disparities and trends in DMC generation across various countries, cities, industries, and individual users. This analysis provides valuable references for subsequent research and problem-solving initiatives under the compact. Furthermore, GDC plays a pivotal role in addressing issues related to AI-generated DMC, contributing significantly to the creation of a secure, reliable, and equitable cyberspace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希格玻色子完成签到,获得积分10
刚刚
1秒前
aprilvanilla完成签到,获得积分10
1秒前
2秒前
FloppyWow完成签到 ,获得积分10
3秒前
JamesPei应助小鲤瑜跃龙门采纳,获得10
3秒前
htm426发布了新的文献求助10
4秒前
小二郎应助皮皮采纳,获得10
4秒前
啦啦啦完成签到 ,获得积分10
6秒前
宇宇宇c完成签到,获得积分10
9秒前
Raymond完成签到,获得积分0
10秒前
書生完成签到,获得积分10
10秒前
影子完成签到,获得积分10
11秒前
11秒前
Wei应助纪你巴采纳,获得10
11秒前
wy1693207859完成签到,获得积分10
11秒前
xkkoala完成签到 ,获得积分10
12秒前
14秒前
李爱国应助霸气映之采纳,获得10
14秒前
15秒前
开朗咖啡发布了新的文献求助10
15秒前
美好未来完成签到,获得积分10
15秒前
科研通AI5应助lizhiqian2024采纳,获得30
17秒前
阿冬呐完成签到,获得积分10
17秒前
guangyu完成签到,获得积分10
18秒前
小蘑菇应助纪你巴采纳,获得30
18秒前
19秒前
Summer发布了新的文献求助30
20秒前
20秒前
21秒前
打打应助美好未来采纳,获得10
22秒前
隐形曼青应助啊啊采纳,获得10
23秒前
asdfqwer发布了新的文献求助10
23秒前
24秒前
24秒前
zho应助wow采纳,获得10
24秒前
aaaa发布了新的文献求助10
25秒前
冷静宛海完成签到,获得积分10
26秒前
一减完成签到 ,获得积分10
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050