Intermediate Domain Prototype Contrastive Adaptation for Spartina alterniflora Segmentation Using Multitemporal Remote Sensing Images

互花米草 计算机科学 判别式 遥感 特征(语言学) 人工智能 分割 模式识别(心理学) 数据挖掘 湿地 地理 生态学 语言学 哲学 沼泽 生物
作者
Boyu Zhao,Mengmeng Zhang,Wei Li,Xiukai Song,Yunhao Gao,Yuxiang Zhang,Junjie Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2024.3350691
摘要

As an invasive plant in wetlands, spartina alterniflora (S.alterniflora) causes immeasurable damage to wetland ecosystems. Observing S.alterniflora using multi-temporal remote sensing data helps us better understand its further development and facilitates effective containment of its invasion trend. However, inconsistent representation across remote sensing data from different time periods poses a challenge. Fortunately, the utilization of Unsupervised Domain Adaptation (UDA) techniques helps in addressing such issues and enables the exploration of rich temporal dimension information in multi-temporal remote sensing data, revealing the spatio-temporal distribution characteristics of S.alterniflora. However, existing UDA methods mostly focus on directly aligning the global or intra-class distribution representations across domains, which overlooks the issue of significant differences between extreme domains and lacks exploration of inter-class relationships. To address these limitations, an Intermediate Domain Prototype Class-level Learning Network (IDPNet) is proposed. IDPNet utilizes dynamically generated intermediate domain features to construct class prototypes while incorporating inter-class information into the prototype construction, achieving the class-centered distribution alignment for adaptation. Moreover, Intermediate Domain Feature Generation Module (IFM) is employed in IDPNet to blend the latent representations from various domains and generate intermediate domain features in real time. Additionally, the hierarchical feature fusion module (HFM) is designed to enable IDPNet to learn more discriminative and robust spatio-temporal distribution features, thereby reducing the loss of information from patches. Experimental results on two cross-year multi-spectral datasets demonstrate that the proposed IDPNet outperforms several state-of-the-art UDA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jiawww发布了新的文献求助10
2秒前
直率谷蕊发布了新的文献求助10
3秒前
3秒前
Yuki发布了新的文献求助10
3秒前
3秒前
上官若男应助西西采纳,获得10
4秒前
5秒前
cmwcmw发布了新的文献求助10
5秒前
大壮发布了新的文献求助10
6秒前
wtzzzh发布了新的文献求助10
6秒前
猪猪hero应助吴小白采纳,获得10
7秒前
科研小白完成签到,获得积分10
9秒前
gjy发布了新的文献求助10
10秒前
kangyz发布了新的文献求助10
10秒前
10秒前
12秒前
激昂的青完成签到,获得积分20
12秒前
科目三应助guojin采纳,获得10
12秒前
小雨完成签到,获得积分10
14秒前
14秒前
15秒前
小蘑菇发布了新的文献求助20
15秒前
直率谷蕊完成签到 ,获得积分10
15秒前
16秒前
不辣的皮特完成签到,获得积分10
17秒前
17秒前
传奇3应助山东老铁采纳,获得10
17秒前
无奈的石头完成签到,获得积分10
18秒前
彭于晏应助默默雨梅采纳,获得10
20秒前
牟宇航发布了新的文献求助10
20秒前
20秒前
Clown发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
小宋发布了新的文献求助10
23秒前
独特的兰发布了新的文献求助30
25秒前
小蘑菇完成签到,获得积分10
27秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818405
求助须知:如何正确求助?哪些是违规求助? 3361530
关于积分的说明 10413272
捐赠科研通 3079791
什么是DOI,文献DOI怎么找? 1693005
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768193