Machine learning-enhanced detection of minor radiation-induced defects in semiconductor materials using Raman spectroscopy

拉曼光谱 半导体 材料科学 光电子学 薄脆饼 半导体器件 背景(考古学) 半导体器件制造 纳米技术 光学 物理 古生物学 图层(电子) 生物
作者
Jia Yi Chia,Nuatawan Thamrongsiripak,Sornwit Thongphanit,Noppadon Nuntawong
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (2) 被引量:5
标识
DOI:10.1063/5.0179881
摘要

Radiation damage in semiconductor materials is a crucial concern for electronic applications, especially in the fields of space, military, nuclear, and medical electronics. With the advancements in semiconductor fabrication techniques and the trend of miniaturization, the quality of semiconductor materials and their susceptibility to radiation-induced defects have become more important than ever. In this context, machine learning (ML) algorithms have emerged as a promising tool to study minor radiation-induced defects in semiconductor materials. In this study, we propose a sensitive non-destructive technique for investigating radiation-induced defects using multivariate statistical analyses combined with Raman spectroscopy. Raman spectroscopy is a contactless and non-destructive method widely used to characterize semiconductor materials and their defects. The multivariate statistical methods applied in analyzing the Raman spectra provide high sensitivity in detecting minor radiation-induced defects. The proposed technique was demonstrated by categorizing 100–500 kGy irradiated GaAs wafers into samples with low and high irradiation levels using linear discrimination analysis ML algorithms. Despite the high similarity in the obtained Raman spectra, the ML algorithms correctly predicted the blind testing samples, highlighting the effectiveness of ML in defect study. This study provides a promising approach for detecting minor radiation-induced defects in semiconductor materials and can be extended to other semiconductor materials and devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LWB发布了新的文献求助30
2秒前
arabidopsis应助小黑点采纳,获得10
2秒前
橙猫猫完成签到,获得积分10
2秒前
小二郎应助yangzhang采纳,获得10
4秒前
南风发布了新的文献求助10
5秒前
Mandyan发布了新的文献求助10
5秒前
5秒前
害羞笑白发布了新的文献求助10
6秒前
6秒前
7秒前
不配.应助xiaomi采纳,获得50
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
Spine脊柱发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
ding应助让我康康采纳,获得10
13秒前
13秒前
笨笨静槐发布了新的文献求助10
15秒前
Cher1she发布了新的文献求助30
15秒前
15秒前
mahliya发布了新的文献求助10
15秒前
Jojin发布了新的文献求助30
15秒前
Mandyan完成签到,获得积分10
17秒前
yangzhang发布了新的文献求助10
17秒前
Zzzhu完成签到,获得积分10
17秒前
ycg发布了新的文献求助10
18秒前
念l完成签到,获得积分10
18秒前
18秒前
18秒前
Song发布了新的文献求助10
19秒前
19秒前
JamesPei应助zzb采纳,获得10
20秒前
脑洞疼应助漂亮凝蝶采纳,获得10
20秒前
20秒前
21秒前
王小白完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285092
求助须知:如何正确求助?哪些是违规求助? 3812537
关于积分的说明 11942455
捐赠科研通 3458948
什么是DOI,文献DOI怎么找? 1897089
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849400