Fundamentals, Properties, and Characteristics of Titanium Carbides MXenes ( Ti 3 C 2 T x )

MXenes公司 材料科学 碳化物 光催化 肖特基势垒 最大相位 电子波段 金属 碳化钛 纳米技术 催化作用 带隙 化学 冶金 光电子学 生物化学 二极管
作者
Areen Sherryna,Muhammad Nawaz Tahir
标识
DOI:10.1002/9783527838707.ch2
摘要

Chapter 2 Fundamentals, Properties, and Characteristics of Titanium Carbides MXenes ( Ti 3 C 2 T x ) Areen Sherryna, Areen Sherryna Universiti Teknologi Malaysia, Faculty of Chemical and Energy Engineering, Faculty of Engineering, UTM, Johor Bahru, Johor, 81310 MalaysiaSearch for more papers by this authorMuhammad Tahir, Muhammad Tahir UAE University, Chemical and Petroleum Engineering Department, P.O. Box 15551, Sheik Khalifa Bin Zayed Street, Al Ain United Arab EmiratesSearch for more papers by this author Areen Sherryna, Areen Sherryna Universiti Teknologi Malaysia, Faculty of Chemical and Energy Engineering, Faculty of Engineering, UTM, Johor Bahru, Johor, 81310 MalaysiaSearch for more papers by this authorMuhammad Tahir, Muhammad Tahir UAE University, Chemical and Petroleum Engineering Department, P.O. Box 15551, Sheik Khalifa Bin Zayed Street, Al Ain United Arab EmiratesSearch for more papers by this author Book Editor(s):Muhammad Tahir, Muhammad Tahir UAE University, P.O. Box, Ai Ain, Abu Dhabi, 15551 United Arab EmiratesSearch for more papers by this author First published: 29 December 2023 https://doi.org/10.1002/9783527838707.ch2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The emergence of two-dimensional (2D) materials in the energy conversion field renders Ti 3 C 2 T x MXenes as a promising metallic cocatalyst owing to their unique morphological structure, tunable termination groups, excellent electrical conductivity, and the Schottky barrier provision. The attractive photocatalytic features endowed by Ti 3 C 2 T x MXene prevailed them as one of the most influential co-catalyst to substitute expensive noble metals. Herein, the fundamentals, properties, and photocatalytic attributes of widely utilized titanium carbide MXenes (Ti 3 C 2 T x ) have been reviewed. First, the structural overview and the fundamentals of the metallic-semiconductor provision are briefly discussed. In the next section, the photocatalytic properties of Ti 3 C 2 T x MXenes with the view of their opto-electronic and electrical properties are deeply focused. Next, the photocatalytic attributes of Ti 3 C 2 T x MXenes are comprehensively discussed. The insights into the Ti 3 C 2 T x MXene functionalization with the views of photocatalytic performances are elucidated. Besides, the intrinsic 2D structure of Ti 3 C 2 T x MXenes with their contribution to the construction of multidimensional Ti 3 C 2 T x MXene-based catalysts are profoundly scrutinized. Finally, the views on the future progress in Ti 3 C 2 T x MXene have been proffered to further explore Ti 3 C 2 T x MXenes in future studies. References Fan , W.K. and Tahir , M. ( 2022 ). Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO 2 reduction to renewable energy and fuels: a review on current progress and future directions . Energy Convers. Manage. 253 : 115180 . 10.1016/j.enconman.2021.115180 Web of Science®Google Scholar Sherryna , A. , Tahir , M. , and Nabgan , W. ( 2021 ). Recent advancements of layered double hydroxide heterojunction composites with engineering approach towards photocatalytic hydrogen production: A review . Int. J. Hydrogen Energy 47 ( 2 ): 862 – 901 . 10.1016/j.ijhydene.2021.10.099 Web of Science®Google Scholar Tahir , M. and Tahir , B. ( 2020 ). 2D/2D/2D O-C 3 N 4 /Bt/Ti 3 C 2 T x heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO 2 reforming to CO and CH 4 . Chem. Eng. J. 400 : 125868 . 10.1016/j.cej.2020.125868 Web of Science®Google Scholar Khan , A.A. , Tahir , M. , and Mohamed , A.R. ( 2022 ). Constructing S-scheme heterojunction of carbon nitride nanorods (g-CNR) assisted trimetallic CoAlLa LDH nanosheets with electron and holes moderation for boosting photocatalytic CO 2 reduction under solar energy . Chem. Eng. J. 433 : 133693 . 10.1016/j.cej.2021.133693 Web of Science®Google Scholar Jun , B.-M. , Kim , S. , Heo , J. et al. ( 2018 ). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications . Nano Res. 12 ( 3 ): 471 – 487 . 10.1007/s12274-018-2225-3 Web of Science®Google Scholar Jiang , X. , Kuklin , A.V. , Baev , A. et al. ( 2020 ). Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications . Phys. Rep. 848 : 1 – 58 . 10.1016/j.physrep.2019.12.006 CASWeb of Science®Google Scholar Naguib , M. , Kurtoglu , M. , Presser , V. et al. ( 2011 ). Two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2 . Adv. Mater. 23 ( 37 ): 4248 – 4253 . 10.1002/adma.201102306 CASPubMedWeb of Science®Google Scholar Handoko , A.D. , Steinmann , S.N. , and Seh , Z.W. ( 2019 ). Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis . Nanoscale Horiz. 4 ( 4 ): 809 – 827 . 10.1039/C9NH00100J CASWeb of Science®Google Scholar Anasori , B. , Lukatskaya , M.R. , and Gogotsi , Y. ( 2017 ). 2D metal carbides and nitrides (MXenes) for energy storage . Nat. Rev. Mater. 2 ( 2 ): 16098 . 10.1038/natrevmats.2016.98 CASWeb of Science®Google Scholar Li , Z. and Wu , Y. ( 2019 ). 2D early transition metal carbides (MXenes) for catalysis . Small 15 ( 29 ): 1804736 . 10.1002/smll.201804736 PubMedWeb of Science®Google Scholar Salim , O. , Mahmoud , K. , Pant , K. , and Joshi , R. ( 2019 ). Introduction to MXenes: synthesis and characteristics . Mater. Today Chem. 14 : 100191 . Web of Science®Google Scholar Hong , L. -f. , Guo , R. -t. , Yuan , Y. et al. ( 2020 ). Recent progress of two-dimensional MXenes in photocatalytic applications: a review . Mater. Today Energy 18 : 100521 . Web of Science®Google Scholar Zhang , L. , Yang , J. , Xie , T. et al. ( 2020 ). Boosting visible-light-driven photocatalytic activity of BiPO 4 via constructing Schottky junction with Ti 3 C 2 MXene . Mater. Design 192 : 108772 . Web of Science®Google Scholar Li , J. , Li , J. , Wu , C. et al. ( 2021 ). Crystalline carbon nitride anchored on MXene as an ordered Schottky heterojunction photocatalyst for enhanced visible-light hydrogen evolution . Carbon 179 : 387 – 399 . 10.1016/j.carbon.2021.04.046 CASWeb of Science®Google Scholar Fajrina , N. and Tahir , M. ( 2019 ). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production . Int. J. Hydrogen Energy 44 ( 2 ): 540 – 577 . 10.1016/j.ijhydene.2018.10.200 CASWeb of Science®Google Scholar Ding , M. , Xiao , R. , Zhao , C. et al. ( 2020 ). Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production . Solar RRL 5 ( 2 ). 10.1002/solr.202000414 Web of Science®Google Scholar Ye , M. , Wang , X. , Liu , E. et al. ( 2018 ). Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst . ChemSusChem 11 ( 10 ): 1606 – 1611 . 10.1002/cssc.201800083 CASPubMedWeb of Science®Google Scholar Sun , Y. , Jin , D. , Sun , Y. et al. ( 2018 ). Wang, g-C 3 N 4 /Ti 3 C 2 T x (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution . J. Mater. Chem. A 6 ( 19 ): 9124 – 9131 . 10.1039/C8TA02706D CASWeb of Science®Google Scholar Yang , C. , Tan , Q. , Li , Q. et al. ( 2020 ). 2D/2D Ti 3 C 2 MXene/g-C 3 N 4 nanosheets heterojunction for high efficient CO 2 reduction photocatalyst: dual effects of urea . Appl. Catal., B 268 : 118738 . 10.1016/j.apcatb.2020.118738 CASWeb of Science®Google Scholar Peng , C. , Wang , H. , Yu , H. , and Peng , F. ( 2017 ). (111) TiO 2–x /Ti 3 C 2 : synergy of active facets, interfacial charge transfer and Ti 3+ doping for enhance photocatalytic activity . Mater. Res. Bull. 89 : 16 – 25 . 10.1016/j.materresbull.2016.12.049 CASWeb of Science®Google Scholar Wang , W.-T. , Batool , N. , Zhang , T.-H. et al. ( 2021 ). When MOFs meet MXenes: superior ORR performance in both alkaline and acidic solutions . J. Mater. Chem. A 9 ( 7 ): 3952 – 3960 . 10.1039/D0TA10811A CASWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2013 ). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides . Adv. Funct. Mater. 23 ( 17 ): 2185 – 2192 . 10.1002/adfm.201202502 CASWeb of Science®Google Scholar K. Wang , X. Li , N. Wang , Q. Shen , M. Liu , J. Zhou , N. Li , Z- Scheme core–shell meso-TiO 2 @ZnIn 2 S 4 /Ti 3 C 2 MXene enhances visible light-driven CO 2 -to-CH 4 selectivity , Ind. Eng. Chem. Res. 60 ( 24 ) ( 2021 ) 8720 - 8732 . 10.1021/acs.iecr.1c00713 CASWeb of Science®Google Scholar Uda , M. , Nakamura , A. , Yamamoto , T. , and Fujirnoto , Y. ( 1998 ). Work function of polycrystalline Ag, Au and Al . J. Electron. Spectrosc. Relat. Phenom. 88-91 : 643 – 648 . 10.1016/S0368-2048(97)00236-3 CASWeb of Science®Google Scholar Agresti , A. , Pazniak , A. , Pescetelli , S. et al. ( 2019 ). Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells . Nat. Mater. 18 ( 11 ): 1228 – 1234 . 10.1038/s41563-019-0478-1 CASPubMedWeb of Science®Google Scholar Derry , G.N. and Ji-Zhong , Z. ( 1989 ). Work function of Pt(111) . Phys. Rev. B: Condens. Matter 39 ( 3 ): 1940 – 1941 . 10.1103/PhysRevB.39.1940 CASPubMedWeb of Science®Google Scholar Chertopalov , S. and Mochalin , V.N. ( 2018 ). Environment-sensitive photoresponse of spontaneously partially oxidized Ti 3 C 2 MXene thin films . ACS Nano 12 ( 6 ): 6109 – 6116 . 10.1021/acsnano.8b02379 CASPubMedWeb of Science®Google Scholar Khazaei , M. , Ranjbar , A. , Arai , M. et al. ( 2017 ). Electronic properties and applications of MXenes: a theoretical review . J. Mater. Chem. C 5 ( 10 ): 2488 – 2503 . 10.1039/C7TC00140A CASWeb of Science®Google Scholar Sherryna , A. and Tahir , M. ( 2021 ). Role of Ti 3 C 2 MXene as prominent Schottky barriers in driving hydrogen production through photoinduced water splitting: a comprehensive review . ACS Appl. Energy Mater. 4 ( 11 ): 11982 – 12006 . 10.1021/acsaem.1c02241 CASWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2013 ). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides . Adv. Funct. Mater. 23 ( 17 ): 2185 – 2192 . 10.1002/adfm.201202502 CASWeb of Science®Google Scholar Berdiyorov , G. ( 2016 ). Optical properties of functionalized Ti 3 C 2 T 2 (T = F, O, OH) MXene: First-principles calculations . AIP Adv. 6 ( 5 ): 055105 . 10.1063/1.4948799 Web of Science®Google Scholar Shabalin , I.L. ( 2019 ). Ultra-High Temperature Materials II: Refractory Carbides I (Ta, Hf, Nb and Zr Carbides) . Springer . 10.1007/978-94-024-1302-1 Google Scholar M. Naguib , V. Mochalin , M.W. Barsoum , Y.G. Gogotsi , MXenes: A New Family of Two-Dimensional Materials--25th Anniversary Article ,( 2014 ). Google Scholar Halim , J. , Lukatskaya , M.R. , Cook , K.M. et al. ( 2014 ). Transparent conductive two-dimensional titanium carbide epitaxial thin films . Chem. Mater. 26 ( 7 ): 2374 – 2381 . 10.1021/cm500641a CASPubMedWeb of Science®Google Scholar Huang , K. , Li , Z. , Lin , J. et al. ( 2018 ). Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications . Chem. Soc. Rev. 47 ( 14 ): 5109 – 5124 . 10.1039/C7CS00838D CASPubMedWeb of Science®Google Scholar Hantanasirisakul , K. , Zhao , M.Q. , Urbankowski , P. et al. ( 2016 ). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties . Adv. Electron. Mater. 2 ( 6 ): 1600050 . 10.1002/aelm.201600050 CASWeb of Science®Google Scholar Tahir , M. , Khan , A.A. , Tasleem , S. et al. ( 2023 ). Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO 2 reduction and H 2 production: a critical review . Desalin. Water Treat. 76 : 295 – 331 . CASGoogle Scholar Mirkhani , S.A. , Shayesteh Zeraati , A. , Aliabadian , E. et al. ( 2019 ). High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti 3 C 2 T x MXene nanocomposites . ACS Appl. Mater. Interfaces 11 ( 20 ): 18599 – 18608 . 10.1021/acsami.9b00393 CASPubMedWeb of Science®Google Scholar Chen , H. , Wen , Y. , Qi , Y. et al. ( 2019 ). Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength . Adv. Funct. Mater. 30 ( 5 ). 10.1002/adfm.201906996 Web of Science®Google Scholar Sang , X. , Xie , Y. , Lin , M.W. et al. ( 2016 ). Atomic defects in monolayer titanium carbide (Ti 3 C 2 T x ) MXene . ACS Nano 10 ( 10 ): 9193 – 9200 . 10.1021/acsnano.6b05240 CASPubMedWeb of Science®Google Scholar Zhang , J. , Kong , N. , Uzun , S. et al. ( 2020 ). Scalable manufacturing of free-standing, strong Ti 3 C 2 T x MXene films with outstanding conductivity . Adv. Mater. 32 ( 23 ): 2001093 . 10.1002/adma.202001093 CASPubMedWeb of Science®Google Scholar Lipatov , A. , Goad , A. , Loes , M.J. et al. ( 2021 ). High electrical conductivity and breakdown current density of individual monolayer Ti 3 C 2 T MXene flakes . Matter 4 ( 4 ): 1413 – 1427 . 10.1016/j.matt.2021.01.021 CASGoogle Scholar Lipatov , A. , Alhabeb , M. , Lukatskaya , M.R. et al. ( 2016 ). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti 3 C 2 MXene flakes . Adv. Electron. Mater. 2 ( 12 ): 1600255 . 10.1002/aelm.201600255 CASWeb of Science®Google Scholar Zhou , W. , Zou , X. , Najmaei , S. et al. ( 2013 ). Intrinsic structural defects in monolayer molybdenum disulfide . Nano Lett. 13 ( 6 ): 2615 – 2622 . 10.1021/nl4007479 CASPubMedWeb of Science®Google Scholar Yazyev , O.V. and Louie , S.G. ( 2010 ). Electronic transport in polycrystalline graphene . Nat. Mater. 9 ( 10 ): 806 – 809 . 10.1038/nmat2830 CASPubMedWeb of Science®Google Scholar Wong , D. , Velasco , J. Jr. , Ju , L. et al. ( 2015 ). Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy . Nat. Nanotechnol. 10 ( 11 ): 949 – 953 . 10.1038/nnano.2015.188 CASPubMedWeb of Science®Google Scholar Shukla , V. ( 2020 ). The tunable electric and magnetic properties of 2D MXenes and their potential applications . Mater. Adv. 1 ( 9 ): 3104 – 3121 . 10.1039/D0MA00548G CASGoogle Scholar Wang , H. , Wu , Y. , Zhang , J. et al. ( 2015 ). Enhancement of the electrical properties of MXene Ti 3 C 2 nanosheets by post-treatments of alkalization and calcination . Mater. Lett. 160 : 537 – 540 . 10.1016/j.matlet.2015.08.046 CASWeb of Science®Google Scholar Shi , H. , Zhang , P. , Liu , Z. et al. ( 2021 ). Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching . Angew. Chem. Int. Ed. 60 ( 16 ): 8689 – 8693 . 10.1002/anie.202015627 CASPubMedWeb of Science®Google Scholar Ghidiu , M. , Lukatskaya , M.R. , Zhao , M.Q. et al. ( 2014 ). Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance . Nature 516 ( 7529 ): 78 – 81 . 10.1038/nature13970 CASPubMedWeb of Science®Google Scholar Naguib , M. , Kurtoglu , M. , Presser , V. et al. ( 2011 ). Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2 (Adv. Mater. 37/2011) . Adv. Mater. 23 ( 37 ): 4207 – 4207 . 10.1002/adma.201190147 Web of Science®Google Scholar Hope , M.A. , Forse , A.C. , Griffith , K.J. et al. ( 2016 ). NMR reveals the surface functionalisation of Ti 3 C 2 MXene . PCCP 18 ( 7 ): 5099 – 5102 . 10.1039/C6CP00330C CASPubMedWeb of Science®Google Scholar Han , M. , Yin , X. , Wu , H. et al. ( 2016 ). Ti 3 C 2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band . ACS Appl. Mater. Interfaces 8 ( 32 ): 21011 – 21019 . 10.1021/acsami.6b06455 CASPubMedWeb of Science®Google Scholar Hu , M. , Hu , T. , Li , Z. et al. ( 2018 ). Surface functional groups and interlayer water determine the electrochemical capacitance of Ti 3 C 2 T x MXene . ACS Nano 12 ( 4 ): 3578 – 3586 . 10.1021/acsnano.8b00676 CASPubMedWeb of Science®Google Scholar Peng , J. , Chen , X. , Ong , W.-J. et al. ( 2019 ). Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro-and photocatalysis . Chem 5 ( 1 ): 18 – 50 . 10.1016/j.chempr.2018.08.037 CASWeb of Science®Google Scholar Peng , C. , Wei , P. , Chen , X. et al. ( 2018 ). A hydrothermal etching route to synthesis of 2D MXene (Ti 3 C 2 , Nb 2 C): enhanced exfoliation and improved adsorption performance . Ceram. Int. 44 ( 15 ): 18886 – 18893 . 10.1016/j.ceramint.2018.07.124 CASWeb of Science®Google Scholar Cheng , L. , Chen , Q. , Li , J. , and Liu , H. ( 2020 ). Boosting the photocatalytic activity of CdLa 2 S 4 for hydrogen production using Ti 3 C 2 MXene as a co-catalyst . Appl. Catal. B-Environ. 267 : 118379 . 10.1016/j.apcatb.2019.118379 Web of Science®Google Scholar Peng , C. , Wang , H. , Yu , H. , and Peng , F. ( 2017 ). (111) TiO 2–x /Ti 3 C 2 : synergy of active facets, interfacial charge transfer and Ti 3+ doping for enhance photocatalytic activity . Mater. Res. Bull. 89 : 16 – 25 . 10.1016/j.materresbull.2016.12.049 CASWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2015 ). OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials . Phys. Rev. B 92 ( 7 ): 075411 . 10.1103/PhysRevB.92.075411 Web of Science®Google Scholar Xie , Y. , Naguib , M. , Mochalin , V.N. et al. ( 2014 ). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides . J. Am. Chem. Soc. 136 ( 17 ): 6385 – 6394 . 10.1021/ja501520b CASPubMedWeb of Science®Google Scholar He , F. , Zhu , B. , Cheng , B. et al. ( 2020 ). 2D/2D/0D TiO 2 /C 3 N 4 /Ti 3 C 2 MXene composite S-scheme photocatalyst with enhanced CO 2 reduction activity . Appl. Catal., B 272 : 119006 . 10.1016/j.apcatb.2020.119006 CASWeb of Science®Google Scholar Li , J. , Zhao , L. , Wang , S. et al. ( 2020 ). In situ fabrication of 2D/3D g-C 3 N 4 /Ti 3 C 2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution . Appl. Surf. Sci. 515 : 145922 . 10.1016/j.apsusc.2020.145922 Web of Science®Google Scholar Cai , T. , Wang , L. , Liu , Y. et al. ( 2018 ). Ag 3 PO 4 /Ti 3 C 2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance . Appl. Catal., B 239 : 545 – 554 . 10.1016/j.apcatb.2018.08.053 CASWeb of Science®Google Scholar Zhang , Y. , Wang , L. , Zhang , N. , and Zhou , Z. ( 2018 ). Adsorptive environmental applications of MXene nanomaterials: a review . RSC Adv. 8 ( 36 ): 19895 – 19905 . 10.1039/C8RA03077D CASPubMedWeb of Science®Google Scholar Liu , Q. , Tan , X. , Wang , S. et al. ( 2019 ). MXene as a non-metal charge mediator in 2D layered CdS@ Ti 3 C 2 @ TiO 2 composites with superior Z-scheme visible light-driven photocatalytic activity . Environ. Sci. Nano 6 ( 10 ): 3158 – 3169 . 10.1039/C9EN00567F CASWeb of Science®Google Scholar Tie , L. , Yang , S. , Yu , C. et al. ( 2019 ). In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution . J. Colloid Interface Sci. 545 : 63 – 70 . 10.1016/j.jcis.2019.03.014 CASPubMedWeb of Science®Google Scholar Xu , N. , Li , H. , Gan , Y. et al. ( 2020 ). Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications . Adv. Sci. (Weinh) 7 ( 22 ): 2002209 . 10.1002/advs.202002209 CASPubMedWeb of Science®Google Scholar Zeng , Z. , Yan , Y. , Chen , J. et al. ( 2019 ). Boosting the photocatalytic ability of Cu 2 O nanowires for CO 2 conversion by MXene quantum dots . Adv. Funct. Mater. 29 ( 2 ): 1806500 . 10.1002/adfm.201806500 Web of Science®Google Scholar Yang , X. , Jia , Q. , Duan , F. et al. ( 2019 ). Multiwall carbon nanotubes loaded with MoS 2 quantum dots and MXene quantum dots: non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution . Appl. Surf. Sci. 464 : 78 – 87 . 10.1016/j.apsusc.2018.09.069 CASWeb of Science®Google Scholar Li , Y. , Ding , L. , Guo , Y. et al. ( 2019 ). Boosting the photocatalytic ability of g-C 3 N 4 for hydrogen production by Ti 3 C 2 MXene quantum dots . ACS Appl. Mater. Interfaces 11 ( 44 ): 41440 – 41447 . 10.1021/acsami.9b14985 CASPubMedWeb of Science®Google Scholar Wei , H. , Jiang , Q. , Ampelli , C. et al. ( 2020 ). Enhancing N 2 fixation activity by converting Ti 3 C 2 MXenes nanosheets to nanoribbons . ChemSusChem 13 ( 21 ): 5614 – 5619 . 10.1002/cssc.202001719 CASPubMedWeb of Science®Google Scholar Shi , H. , Dong , Y. , Zheng , S. et al. ( 2020 ). Three dimensional Ti 3 C 2 MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes . Nanoscale Adv. 2 ( 9 ): 4212 – 4219 . 10.1039/D0NA00515K CASPubMedWeb of Science®Google Scholar Enyashin , A.N. and Ivanovskii , A.L. ( 2012 ). Atomic structure, comparative stability and electronic properties of hydroxylated Ti 2 C and Ti 3 C 2 nanotubes . Comput. Theor. Chem. 989 : 27 – 32 . 10.1016/j.comptc.2012.02.034 CASWeb of Science®Google Scholar Zuo , G. , Wang , Y. , Teo , W.L. et al. ( 2021 ). Enhanced photocatalytic water oxidation by hierarchical 2D-Bi 2 MoO 6 @2D-MXene Schottky junction nanohybrid . Chem. Eng. J. 403 . 10.1016/j.cej.2020.126328 Web of Science®Google Scholar Sun , L. , Fu , Q. , and Pan , C. ( 2021 ). Hierarchical porous "skin/skeleton"-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors . J. Hazard. Mater. 410 : 124565 . 10.1016/j.jhazmat.2020.124565 Web of Science®Google Scholar My Tran , N. , Ta , Q.T.H. , and Noh , J.-S. ( 2021 ). Unusual synthesis of safflower-shaped TiO 2 /Ti 3 C 2 heterostructures initiated from two-dimensional Ti 3 C 2 MXene . Appl. Surf. Sci. 538 : 148023 . 10.1016/j.apsusc.2020.148023 Web of Science®Google Scholar Sherryna , A. and Tahir , M. ( 2022 ). Role of surface morphology and terminating groups in titanium carbide MXenes (Ti 3 C 2 T x ) cocatalysts with engineering aspects for modulating solar hydrogen production: a critical review . Chem. Eng. J. 433 : 134573 . 10.1016/j.cej.2022.134573 Web of Science®Google Scholar Tahir , M. , Sherryna , A. , Mansoor , R. et al. ( 2022 ). Titanium carbide MXene nanostructures as catalysts and cocatalysts for photocatalytic fuel production: a review . ACS Appl. Nano Mater. 5 ( 1 ): 18 – 54 . 10.1021/acsanm.1c03112 CASWeb of Science®Google Scholar Huang , K. , Li , C. , Li , H. et al. ( 2020 ). Photocatalytic applications of two-dimensional Ti 3 C 2 MXenes: a review . ACS Appl. Nano Mater. 3 ( 10 ): 9581 – 9603 . 10.1021/acsanm.0c02481 CASWeb of Science®Google Scholar Tahir , M. , Sherryna , A. , and Zakaria , Z.Y. ( 2021 ). Facile synthesis of MAX modified graphitic carbon nitride nanocomposite for stimulating hydrogen production through photocatalytic water splitting, chemical . Eng. Transac. 89 : 571 – 576 . Google Scholar Wang , Y. , Wang , X. , Li , X. et al. ( 2019 ). Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance . Adv. Funct. Mater. 29 ( 14 ): 1900326 . 10.1002/adfm.201900326 Web of Science®Google Scholar Tahir , M. ( 2021 ). Investigating the influential effect of etchant time in constructing 2D/2D HCN/MXene heterojunction with controlled growth of TiO 2 NPs for stimulating photocatalytic H 2 production . Energy Fuels 35 ( 8 ): 6807 – 6822 . 10.1021/acs.energyfuels.1c00204 CASWeb of Science®Google Scholar Luo , B. , Liu , G. , and Wang , L. ( 2016 ). Recent advances in 2D materials for photocatalysis . Nanoscale 8 ( 13 ): 6904 – 6920 . 10.1039/C6NR00546B CASPubMedWeb of Science®Google Scholar Ma , Y. , Xu , D. , Chen , W. et al. ( 2022 ). Oxygen-vacancy-embedded 2D/2D NiFe-LDH/MXene Schottky heterojunction for boosted photodegradation of norfloxacin . Appl. Surf. Sci. 572 . 10.1016/j.apsusc.2021.151432 Web of Science®Google Scholar Yao , Z. , Sun , H. , Sui , H. , and Liu , X. ( 2020 ). 2D/2D heterojunction of R-scheme Ti 3 C 2 MXene/MoS 2 nanosheets for enhanced photocatalytic performance . Nanoscale Res. Lett. 15 ( 1 ): 78 . 10.1186/s11671-020-03314-z CASPubMedWeb of Science®Google Scholar Yang , C. , Tan , Q. , Li , Q. et al. ( 2020 ). 2D/2D Ti 3 C 2 MXene/g-C 3 N 4 nanosheets heterojunction for high efficient CO 2 reduction photocatalyst: dual effects of urea . Appl. Catal. B-Environ. 268 : 118738 . 10.1016/j.apcatb.2020.118738 Web of Science®Google Scholar Du , Z. , Cai , H. , Guo , Z. et al. ( 2022 ). Synergistic photocatalytic of CO 2 -to-CO conversion by 2D/1D Ti 3 C 2 T x /p-BN heterojunction with interfacial chemical bonding . J. Alloys Compd. 920 . 10.1016/j.jallcom.2022.165933 Google Scholar Thirumal , V. , Yuvakkumar , R. , Kumar , P.S. et al. ( 2022 ). Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants . Chemosphere 286 ( Pt 2 ): 131733 . PubMedGoogle Scholar Xiao , R. , Zhao , C. , Zou , Z. et al. ( 2020 ). In situ fabrication of 1D CdS nanorod/2D Ti 3 C 2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution . Appl. Catal. B-Environ. 268 : 118382 . 10.1016/j.apcatb.2019.118382 Web of Science®Google Scholar Qin , X. , Cao , R. , Gong , W. et al. ( 2022 ). Hydrothermal growth of ZnCdS/TiO 2 nanoparticles on the surface of the Ti 3 C 2 MXene sheet to enhance photocatalytic performance under visible light . J. Solid State Chem. 306 . 10.1016/j.jssc.2021.122750 Web of Science®Google Scholar Liu , X. , Liu , Q. , and Chen , C. ( 2021 ). Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic activity under visible light . Vacuum 183 : 109834 . 10.1016/j.vacuum.2020.109834 Web of Science®Google Scholar Sherryna , A. and Tahir , M. ( 2021 ). Recent developments in layered double hydroxide structures with their role in promoting photocatalytic hydrogen production: a comprehensive review . Int. J. Energy Res. 46 ( 3 ): 2093 – 2140 . 10.1002/er.7335 Web of Science®Google Scholar Anasori , B. and Gogotsi , Y. ( 2019 ). Metal Carbides and Nitrides (MXenes) Structure, Properties and Applications . Switzerland AG, Cham, Switzerland : Springer Nature . 10.1007/978-3-030-19026-2 Google Scholar Kumar , R. , Joanni , E. , Singh , R.K. et al. ( 2018 ). Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage . Prog. Energy Combust. Sci. 67 : 115 – 157 . 10.1016/j.pecs.2018.03.001 Web of Science®Google Scholar Zhao , M.-Q. , Torelli , M. , Ren , C.E. et al. ( 2016 ). 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage . Nano Energy 30 : 603 – 613 . 10.1016/j.nanoen.2016.10.062 CASWeb of Science®Google Scholar Titanium Carbide MXenes: Synthesis, Characterization, Energy and Environmental Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏立翔完成签到,获得积分10
刚刚
冰西瓜完成签到 ,获得积分10
1秒前
3秒前
NICAI发布了新的文献求助200
3秒前
润泽完成签到,获得积分10
3秒前
鼠鼠想养猫完成签到,获得积分10
3秒前
安静鸽哥发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
xiao牛完成签到,获得积分10
5秒前
大模型应助早睡早起采纳,获得10
6秒前
6秒前
7秒前
7秒前
齐小明完成签到,获得积分20
7秒前
秦王不能死完成签到,获得积分10
8秒前
xxme77发布了新的文献求助10
9秒前
9秒前
从容的白薇完成签到,获得积分20
9秒前
奋斗的滑板完成签到,获得积分10
9秒前
ding应助xx采纳,获得10
9秒前
高兴发箍发布了新的文献求助10
9秒前
study00122完成签到,获得积分10
12秒前
qizhixu发布了新的文献求助10
12秒前
12秒前
13秒前
朱荧荧发布了新的文献求助10
15秒前
17秒前
魏立翔发布了新的文献求助10
18秒前
abudu应助yyy采纳,获得10
19秒前
ukdiu发布了新的文献求助10
19秒前
华仔应助从容的白薇采纳,获得10
20秒前
益达完成签到,获得积分10
22秒前
超能力完成签到,获得积分10
22秒前
糟糕的铁身应助qizhixu采纳,获得10
22秒前
rocky15应助踏实的千柳采纳,获得20
23秒前
AI完成签到 ,获得积分10
24秒前
derrick5完成签到,获得积分10
24秒前
共享精神应助伯赏汝燕采纳,获得10
24秒前
大模型应助益达采纳,获得10
26秒前
wuyu发布了新的文献求助30
28秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Love and Friendship in the Western Tradition: From Plato to Postmodernity 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2548783
求助须知:如何正确求助?哪些是违规求助? 2176691
关于积分的说明 5605753
捐赠科研通 1897461
什么是DOI,文献DOI怎么找? 946990
版权声明 565447
科研通“疑难数据库(出版商)”最低求助积分说明 503985