已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

STCC: consensus clustering enhances spatial domain detection for spatial transcriptomics data

聚类分析 可扩展性 计算机科学 数据挖掘 空间分析 共识聚类 领域(数学分析) 理论(学习稳定性) 任务(项目管理) 机器学习 CURE数据聚类算法 相关聚类 数据库 数学 遥感 工程类 地理 数学分析 系统工程
作者
Congcong Hu,Nana Wei,Jiyuan Yang,Hua‐Jun Wu,Xiaoqi Zheng
标识
DOI:10.1101/2024.02.25.581996
摘要

Abstract The rapid advance of spatially resolved transcriptomics technologies has yielded substantial spatial transcriptomics data. Deriving biological insights from these data poses non-trivial computational and analysis challenges, of which the most fundamental step is spatial domain detection (or spatial clustering). Although a number of tools for spatial domain detection have been proposed in recent years, their performance varies across datasets and experimental platforms. It is thus an important task to take full advantage of different tools to get a more accurate and stable result through consensus strategy. In this work, we developed STCC, a novel consensus clustering framework for spatial transcriptomics data that aggregates outcomes from state-of-the-art tools using a variety of consensus strategies, including Onehot-based, Average-based, Hypergraph-based and wNMF-based methods. Comprehensive assessments on simulated and real data from distinct experimental platforms show that consensus clustering significantly improves clustering accuracy over individual methods under varied input parameters. For normal tissue samples exhibiting clear layered structure, consensus clustering by integrating multiple baseline methods leads to improved results. Conversely, when analyzing tumor samples that display scattered cell type distribution patterns, integration of a single baseline method yields satisfactory performance. For consensus strategies, Average-based and Hypergraph-based approaches demonstrated optimal precision and stability. Overall, STCC provides a scalable and practical solution for spatial domain detection in spatial transcriptomic data, laying a solid foundation for future research and applications in spatial transcriptomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
mashichuang发布了新的文献求助10
6秒前
6秒前
cc完成签到,获得积分10
8秒前
yunjian1583发布了新的文献求助10
11秒前
12秒前
Owen应助小欣采纳,获得10
12秒前
科研通AI5应助心无旁骛采纳,获得10
15秒前
kaustal完成签到,获得积分10
16秒前
搞怪文轩发布了新的文献求助10
16秒前
czjj发布了新的文献求助10
17秒前
17秒前
wanci应助wjw采纳,获得10
18秒前
轻松含双完成签到,获得积分10
19秒前
zhao完成签到 ,获得积分10
19秒前
Jasper应助supper采纳,获得50
22秒前
23秒前
星辰大海应助mementomori采纳,获得10
23秒前
岳小龙发布了新的文献求助10
23秒前
xue发布了新的文献求助10
23秒前
26秒前
27秒前
乐乐完成签到 ,获得积分10
27秒前
小欣发布了新的文献求助10
27秒前
xinyu发布了新的文献求助10
31秒前
32秒前
mmm发布了新的文献求助10
33秒前
共享精神应助哈哈采纳,获得10
33秒前
小名余土土完成签到,获得积分10
34秒前
moxin发布了新的文献求助50
35秒前
37秒前
40秒前
三千年的成长完成签到 ,获得积分10
41秒前
mementomori发布了新的文献求助10
43秒前
43秒前
44秒前
45秒前
46秒前
蓉蓉发布了新的文献求助10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815407
求助须知:如何正确求助?哪些是违规求助? 3359175
关于积分的说明 10400609
捐赠科研通 3076830
什么是DOI,文献DOI怎么找? 1690026
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674