清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BOF steelmaking endpoint carbon content and temperature soft sensor based on supervised dual-branch DBN

深信不疑网络 计算机科学 限制玻尔兹曼机 人工智能 特征提取 软传感器 修剪 特征(语言学) 模式识别(心理学) 水准点(测量) 自编码 过程(计算) 数据挖掘 钥匙(锁) 深度学习 计算机安全 农学 语言学 大地测量学 操作系统 地理 生物 哲学
作者
Zongxu Lu,Hui Liu,Fugang Chen,Heng Li,Xiaojun Xue
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035119-035119 被引量:7
标识
DOI:10.1088/1361-6501/ad14e6
摘要

Abstract Accurate prediction of endpoint carbon content and temperature is critical in the basic oxygen furnace (BOF) steelmaking process. Although deep learning soft sensor approaches have the capacity to extract abstract features from high-dimensional nonlinear steelmaking data, they confront the challenge of a low correlation between acquired features and labels. This work presents a BOF steelmaking soft sensor model based on supervised dual-branch deep belief network (SD-DBN) to address this issue. The SD-DBN model incorporates label information into the feature extraction process and fuses crucial feature information to complete the feature extraction in order to extract features that are closely connected to the target variables. First, the supervised Restricted Boltzmann Machine (RBM) is improved by using a pruning strategy to extract features that are highly correlated with quality information, and then the autocorrelation key feature extraction module is spliced and fused to form a dual-branch feature extraction module to improve key information extraction. Second, stacking the supervised dual-branch RBM modules to build a deep feature extraction network enhances the deep extraction capabilities of data features. This deep network stacking not only increases the impact of essential target data in hierarchical training, but it also acquires characteristics associated with the target variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofeixia完成签到 ,获得积分10
1秒前
苗笑卉完成签到,获得积分10
1秒前
wushuimei完成签到 ,获得积分10
9秒前
满意麦片完成签到 ,获得积分10
12秒前
racill完成签到 ,获得积分10
41秒前
shhoing应助科研通管家采纳,获得10
45秒前
yong完成签到 ,获得积分10
51秒前
1分钟前
zw完成签到,获得积分10
1分钟前
wayne完成签到 ,获得积分10
1分钟前
义气莫茗完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
动人的诗霜完成签到 ,获得积分10
1分钟前
135完成签到 ,获得积分10
1分钟前
2分钟前
小西完成签到 ,获得积分10
2分钟前
数乱了梨花完成签到 ,获得积分0
2分钟前
foreverchoi完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
井冬完成签到 ,获得积分10
3分钟前
3分钟前
田様应助郑阔采纳,获得10
3分钟前
wang5945完成签到 ,获得积分10
3分钟前
又壮了完成签到 ,获得积分10
3分钟前
wuludie完成签到,获得积分0
3分钟前
shhoing应助wuludie采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
笑傲完成签到,获得积分10
4分钟前
溆玉碎兰笑完成签到 ,获得积分10
4分钟前
4分钟前
迅速的幻雪完成签到 ,获得积分10
4分钟前
似水流年完成签到 ,获得积分10
4分钟前
满意的伊完成签到,获得积分10
5分钟前
lod完成签到,获得积分10
5分钟前
5分钟前
天工开物发布了新的文献求助10
5分钟前
5分钟前
闻巷雨完成签到 ,获得积分10
5分钟前
森禾完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549545
求助须知:如何正确求助?哪些是违规求助? 4634750
关于积分的说明 14635120
捐赠科研通 4576336
什么是DOI,文献DOI怎么找? 2509661
邀请新用户注册赠送积分活动 1485489
关于科研通互助平台的介绍 1456819