Applying traffic camera and deep learning-based image analysis to predict PM2.5 concentrations

均方误差 随机森林 人工神经网络 特征(语言学) 计算机科学 空气质量指数 深度学习 人工智能 环境科学 遥感 气象学 统计 数学 地理 语言学 哲学
作者
Yanming Liu,Yuxi Zhang,Pei Yu,Tingting Ye,Yiwen Zhang,Rongbin Xu,Shanshan Li,Yuming Guo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:912: 169233-169233
标识
DOI:10.1016/j.scitotenv.2023.169233
摘要

Air pollution has caused a significant burden in terms of mortality and mobility worldwide. However, the current coverage of air quality monitoring networks is still limited.This study aims to apply a novel approach to convert the existing traffic cameras into sensors measuring particulate matter with a diameter of 2.5 μm or less (PM2.5) so that the coverage of PM2.5 monitoring could be expanded without extra cost.In our study, the traffic camera images were collected at a rate of 4 images/h and the corresponding hourly PM2.5 concentration was collected from the reference grade PM2.5 station 3 km away. A customized neural network model was trained to obtain the PM2.5 concentration from images followed by a random forest model to predict the hourly PM2.5 concentration. The saliency maps and the feature importance were utilized to interpret the neural network.Proposed novel approach has a high prediction performance to predict hourly PM2.5 from traffic camera images, with a root mean square error (RMSE) of 0.76 μg/m3 and a coefficient of determination (R2) of 0.98. The saliency map shows neural network focuses on unobstructed far-end road surfaces while the random forest feature importance highlights the first quarter image's significance. The model performance is robust whether weather conditions are controlled or not.Our study provided a practical approach to converting the existing traffic cameras into PM2.5 sensors. The deep learning method based on the Resnet architecture in our study can broaden the coverage of PM2.5 monitoring with no additional infrastructure needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
香蕉觅云应助XX采纳,获得10
1秒前
1秒前
2秒前
科研通AI5应助zheng采纳,获得10
2秒前
兴奋海雪完成签到,获得积分20
2秒前
花城发布了新的文献求助10
2秒前
betty2009发布了新的文献求助10
3秒前
xiang完成签到,获得积分10
3秒前
顾矜应助Kismet采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
ang完成签到,获得积分10
5秒前
泽上发布了新的文献求助10
5秒前
5秒前
丁的发布了新的文献求助10
6秒前
6秒前
Agoni完成签到,获得积分20
7秒前
天天快乐应助Justin杨采纳,获得10
7秒前
整齐新儿发布了新的文献求助10
7秒前
甜甜发布了新的文献求助10
8秒前
8秒前
8秒前
XF发布了新的文献求助10
8秒前
ssy完成签到,获得积分10
8秒前
柠檬发布了新的文献求助30
8秒前
大气山兰完成签到,获得积分10
9秒前
超声波完成签到,获得积分10
9秒前
音悦台完成签到,获得积分10
9秒前
Danqing完成签到 ,获得积分10
9秒前
777完成签到,获得积分10
9秒前
Q_Q发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
dengying500完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868