Erasing, Transforming, and Noising Defense Network for Occluded Person Re-Identification

计算机科学 对抗制 人工智能 分类器(UML) 人工神经网络 噪音(视频) 稳健性(进化) 提取器 鉴定(生物学) 随机噪声 编码(集合论) 机器学习 计算机视觉 图像(数学) 算法 植物 集合(抽象数据类型) 工艺工程 生物 工程类 程序设计语言 生物化学 化学 基因
作者
Neng Dong,Liyan Zhang,Shuanglin Yan,Hao Tang,Jinhui Tang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4458-4472 被引量:6
标识
DOI:10.1109/tcsvt.2023.3339167
摘要

Occlusion perturbation presents a significant challenge in person re-identification (re-ID), and existing methods that rely on external visual cues require additional computational resources and only consider the issue of missing information caused by occlusion. In this paper, we propose a simple yet effective framework, termed Erasing, Transforming, and Noising Defense Network (ETNDNet), which treats occlusion as a noise disturbance and solves occluded person re-ID from the perspective of adversarial defense. In the proposed ETNDNet, we introduce three strategies: Firstly, we randomly erase the feature map to create an adversarial representation with incomplete information, enabling adversarial learning of identity loss to protect the re-ID system from the disturbance of missing information. Secondly, we introduce random transformations to simulate the position misalignment caused by occlusion, training the extractor and classifier adversarially to learn robust representations immune to misaligned information. Thirdly, we perturb the feature map with random values to address noisy information introduced by obstacles and non-target pedestrians, and employ adversarial gaming in the re-ID system to enhance its resistance to occlusion noise. Without bells and whistles, ETNDNet has three key highlights: (i) it does not require any external modules with parameters, (ii) it effectively handles various issues caused by occlusion from obstacles and non-target pedestrians, and (iii) it designs the first GAN-based adversarial defense paradigm for occluded person re-ID. Extensive experiments on six public datasets fully demonstrate the effectiveness, superiority, and practicality of the proposed ETNDNet. The code will be released at https://github.com/nengdong96/ETNDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾思凡完成签到,获得积分10
1秒前
白白白完成签到,获得积分10
4秒前
5秒前
刻苦大叔发布了新的文献求助10
6秒前
6秒前
阳光血茗完成签到,获得积分10
7秒前
又又完成签到,获得积分10
7秒前
隐形曼青应助借一颗糖采纳,获得10
9秒前
科研通AI2S应助MMMMathilda23采纳,获得10
9秒前
11秒前
11秒前
12秒前
bkagyin应助AronHUANG采纳,获得10
13秒前
Lucas应助wh雨采纳,获得10
13秒前
huanghan完成签到,获得积分10
14秒前
Flora发布了新的文献求助10
14秒前
15秒前
刻苦大叔完成签到,获得积分10
16秒前
流沙发布了新的文献求助10
16秒前
wenjing完成签到,获得积分10
17秒前
淡淡的语柳完成签到 ,获得积分10
18秒前
19秒前
沛文发布了新的文献求助10
19秒前
byd完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
Nolan发布了新的文献求助10
22秒前
典雅碧空应助暴躁的信封采纳,获得10
22秒前
pluto应助HLe1216采纳,获得10
24秒前
以舟发布了新的文献求助10
26秒前
27秒前
领导范儿应助陈文学采纳,获得10
27秒前
AronHUANG发布了新的文献求助10
27秒前
28秒前
英姑应助五五乐采纳,获得10
30秒前
虚心柠檬完成签到 ,获得积分10
33秒前
天天快乐应助yi采纳,获得10
33秒前
34秒前
借一颗糖发布了新的文献求助10
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4045040
求助须知:如何正确求助?哪些是违规求助? 3582716
关于积分的说明 11387391
捐赠科研通 3310160
什么是DOI,文献DOI怎么找? 1821840
邀请新用户注册赠送积分活动 893878
科研通“疑难数据库(出版商)”最低求助积分说明 815917