Erasing, Transforming, and Noising Defense Network for Occluded Person Re-Identification

计算机科学 对抗制 人工智能 分类器(UML) 人工神经网络 噪音(视频) 稳健性(进化) 提取器 鉴定(生物学) 随机噪声 编码(集合论) 机器学习 计算机视觉 图像(数学) 算法 植物 集合(抽象数据类型) 工艺工程 生物 工程类 程序设计语言 生物化学 化学 基因
作者
Neng Dong,Liyan Zhang,Shuanglin Yan,Hao Tang,Jinhui Tang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4458-4472 被引量:6
标识
DOI:10.1109/tcsvt.2023.3339167
摘要

Occlusion perturbation presents a significant challenge in person re-identification (re-ID), and existing methods that rely on external visual cues require additional computational resources and only consider the issue of missing information caused by occlusion. In this paper, we propose a simple yet effective framework, termed Erasing, Transforming, and Noising Defense Network (ETNDNet), which treats occlusion as a noise disturbance and solves occluded person re-ID from the perspective of adversarial defense. In the proposed ETNDNet, we introduce three strategies: Firstly, we randomly erase the feature map to create an adversarial representation with incomplete information, enabling adversarial learning of identity loss to protect the re-ID system from the disturbance of missing information. Secondly, we introduce random transformations to simulate the position misalignment caused by occlusion, training the extractor and classifier adversarially to learn robust representations immune to misaligned information. Thirdly, we perturb the feature map with random values to address noisy information introduced by obstacles and non-target pedestrians, and employ adversarial gaming in the re-ID system to enhance its resistance to occlusion noise. Without bells and whistles, ETNDNet has three key highlights: (i) it does not require any external modules with parameters, (ii) it effectively handles various issues caused by occlusion from obstacles and non-target pedestrians, and (iii) it designs the first GAN-based adversarial defense paradigm for occluded person re-ID. Extensive experiments on six public datasets fully demonstrate the effectiveness, superiority, and practicality of the proposed ETNDNet. The code will be released at https://github.com/nengdong96/ETNDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助笑点低凡桃采纳,获得10
3秒前
5秒前
开放素完成签到 ,获得积分10
6秒前
cookie完成签到,获得积分10
6秒前
友好冷风发布了新的文献求助30
7秒前
EasyNan应助大机灵采纳,获得10
8秒前
琳雨完成签到,获得积分10
8秒前
渡星河发布了新的文献求助10
9秒前
majianzzu发布了新的文献求助30
10秒前
11秒前
sonder完成签到,获得积分10
11秒前
11秒前
ziyuexu发布了新的文献求助10
12秒前
何公主完成签到,获得积分10
12秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
12秒前
善学以致用应助BASS采纳,获得10
17秒前
Kai完成签到,获得积分10
18秒前
ma完成签到,获得积分10
18秒前
酷波er应助ritanon采纳,获得10
19秒前
majianzzu完成签到,获得积分10
22秒前
orixero应助陈陈采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Kirito应助科研通管家采纳,获得10
24秒前
24秒前
湖以应助科研通管家采纳,获得20
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
BINGBING应助科研通管家采纳,获得60
25秒前
深情祥完成签到,获得积分10
25秒前
与尔同销万古愁完成签到,获得积分10
25秒前
可耐的秋莲完成签到,获得积分10
26秒前
26秒前
渡星河完成签到,获得积分10
27秒前
28秒前
祁舒豪发布了新的文献求助20
31秒前
李健应助贪玩的万仇采纳,获得10
34秒前
35秒前
36秒前
36秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848752
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568084
捐赠科研通 3112149
什么是DOI,文献DOI怎么找? 1715102
邀请新用户注册赠送积分活动 825561
科研通“疑难数据库(出版商)”最低求助积分说明 775663