Research on vehicle trajectory fusion prediction based on physical model and driving intention recognition

弹道 计算机科学 均方误差 隐马尔可夫模型 加速度 模拟 人工智能 数学 统计 天文 经典力学 物理
作者
Ning Sun,Nan Xu,Konghui Guo,Yulong Han,Luyao Wang
出处
标识
DOI:10.1177/09544070231205059
摘要

At present, accurately predicting the long-term trajectory of traffic vehicles for autonomous vehicles remains a challenging task. Dynamic scenarios often necessitate frequent replanning, which can waste computing resources and increase the risk of traffic accidents. To address this issue, this paper proposes a vehicle trajectory fusion prediction method based on a physical model and driving intention recognition. Firstly, trajectory prediction is based on the Constant Turn Rate and Acceleration (CTRA) model, which is combined with the vehicle’s motion state to obtain Trajectory1. Next, a Hidden Markov Model (HMM) is employed to identify driving intentions. Building upon this, a Gaussian Mixture Model (GMM) is used to perform probability density statistical analysis on driving data, yielding feature parameters Dx and Dy. These parameters are then combined with a Quintic polynomial to predict the trajectory, resulting in Trajectory2. Finally, Trajectory1 and Trajectory2 are fused to obtain the ultimate predicted trajectory, referred to as Trajectory3. To validate the effectiveness of the trajectory prediction method proposed in this paper, the algorithm is tested in both left lane change (LCL) and right lane change (LCR) scenarios. The test results demonstrate that the root mean square error (RMSE), mean absolute error (MAE), and maximum absolute error (MXAE) for Trajectory3, generated using the fusion algorithm, are significantly smaller than those for Trajectory1 and Trajectory2. This indicates the efficacy of the proposed model, which contributes to making high-quality decisions and plans for autonomous vehicles, reducing the probability of traffic accidents, and enhancing public confidence in autonomous vehicle technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整个好活完成签到,获得积分10
2秒前
坚定的骁完成签到,获得积分10
2秒前
2秒前
沙珠完成签到,获得积分10
3秒前
愉快的土豆完成签到,获得积分20
4秒前
华仔应助Summer采纳,获得50
5秒前
Niniiii应助KaK采纳,获得10
7秒前
8秒前
忆仙姿完成签到,获得积分10
10秒前
LNE完成签到,获得积分10
12秒前
汉堡包应助懒羊羊大王采纳,获得10
12秒前
俭朴的发带完成签到,获得积分10
15秒前
跨越山海的热爱完成签到 ,获得积分10
19秒前
23秒前
科目三应助肖福艳采纳,获得30
24秒前
26秒前
可耐的无剑完成签到 ,获得积分10
26秒前
大猪发布了新的文献求助10
27秒前
ypp完成签到,获得积分10
29秒前
29秒前
30秒前
30秒前
30秒前
在水一方应助虚幻的安柏采纳,获得10
34秒前
乐乐应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
35秒前
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
35秒前
幽弥狂完成签到,获得积分10
35秒前
xxxxx发布了新的文献求助20
36秒前
36秒前
妙奇发布了新的文献求助10
36秒前
NexusExplorer应助轻松笙采纳,获得10
37秒前
Summer发布了新的文献求助50
38秒前
斗牛的番茄完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779500
求助须知:如何正确求助?哪些是违规求助? 3324978
关于积分的说明 10220745
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668585
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522