Deep learning-based tumor segmentation and classification in breast MRI with 3TP method

人工智能 分割 计算机科学 模式识别(心理学) 乳腺肿瘤 深度学习 乳房磁振造影 乳腺癌 医学 乳腺摄影术 癌症 内科学
作者
Edson Damasceno Carvalho,Otílio Paulo da Silva Neto,Antônio Oséas de Carvalho Filho
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106199-106199
标识
DOI:10.1016/j.bspc.2024.106199
摘要

Timely diagnosis of early breast cancer plays a critical role in improving patient outcome and increasing treatment effectiveness. Dynamic contrast-enhancing magnetic resonance imaging (DCE-MRI) is a minimally invasive test widely used in the analysis of breast cancer. Manual analysis of DCE-MRI images by the specialist is extremely complex, exhaustive, and can lead to misunderstandings. Thus, the development of automated methods for analyzing DCE-MRI images of the breast is increasing. In this research, we propose an automatic methodology capable of detecting tumors and classifying their malignancy in a DCE-MRI breast image. The proposed method consists of the use of two deep learning architectures, that is, SegNet and UNet, for breast tumor segmentation and the three-time-point (3TP) method for classifying the malignancy of segmented tumors. The proposed methodology was tested on the public Quantitative Imaging Network (QIN) Breast DCE-MRI image set, and the best result in segmentation was a Dice of 0.9332 and IoU of 0.9799. For the classification of tumor malignancy, the methodology presented an accuracy of 100%. In our research, we demonstrate that the problem of mammary tumor segmentation in DCE-MRI images can be efficiently solved using deep learning architectures, and tumor malignancy classification can be done through the three-time method. The method can be integrated as a support system for the specialist in treating patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
科目三应助Clover采纳,获得10
5秒前
冯尔蓝发布了新的文献求助10
5秒前
可可可11完成签到 ,获得积分10
5秒前
5秒前
6秒前
SciGPT应助意志所向采纳,获得10
7秒前
吃颗糖吧完成签到,获得积分20
7秒前
XIL发布了新的文献求助10
8秒前
微笑的天抒完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
万能图书馆应助hxldsb采纳,获得10
10秒前
10秒前
lh发布了新的文献求助10
10秒前
jingjing发布了新的文献求助150
11秒前
11秒前
wong8384发布了新的文献求助10
11秒前
12秒前
共享精神应助小苏采纳,获得10
12秒前
小黄发布了新的文献求助10
12秒前
自觉绿柏完成签到,获得积分10
13秒前
jimmy发布了新的文献求助10
13秒前
13秒前
eurhfe完成签到,获得积分10
14秒前
14秒前
orixero应助坦率尔琴采纳,获得10
14秒前
Newky发布了新的文献求助10
14秒前
pojian完成签到,获得积分10
16秒前
16秒前
18秒前
上官若男应助XIL采纳,获得10
18秒前
19秒前
jimmy完成签到,获得积分20
19秒前
19秒前
19秒前
吴图图发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178