已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generative Adversarial Networks for Augmenting Endoscopy Image Datasets of Stomach Precancerous Lesions: A Review

计算机科学 癌前病变 人工智能 鉴定(生物学) 领域(数学) 胃癌 深度学习 机器学习 模式识别(心理学) 癌症 医学 植物 数学 纯数学 内科学 生物
作者
Bruno Magalhães,Alexandre Neto,A. Cunha
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136292-136307 被引量:3
标识
DOI:10.1109/access.2023.3338545
摘要

Gastric cancer (GC) is still a significant public health issue, among the most common and deadly cancers globally. The identification and characterization of precancerous lesions of the stomach using endoscopy are crucial for determining the risk of cancer and guiding appropriate surveillance. In this scenario, deep learning (DL)-based computer vision methods have the potential to help us classify and identify particular patterns in endoscopic images, leading to a more accurate classification of these types of lesions. The quantity and quality of the data used heavily influence the classification performance of DL networks. However, one of the major setbacks for developing high-performance DL classification models is the typical need for more available data in the medical field. This review explores the use of Generative Adversarial Networks (GANs) and classical data augmentation techniques for improving the classification of precancerous stomach lesions. GANs are DL models that have shown promising results in generating synthetic data, which can be used to augment limited medical datasets. This review discusses recent studies that have implemented GANs and classical data augmentation methods to improve the accuracy of cancerous lesion classification. The results indicate that GANs can effectively increase the dataset's size, enhance the classification models' performance, and, in some cases, obtain superior results than classical data augmentation. Furthermore, this review highlights the challenges and limitations of the recent works using GANs and classical data augmentation techniques in medical imaging analysis and proposes directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研达人发布了新的文献求助10
1秒前
脑洞疼应助狂飙的蛋采纳,获得10
2秒前
2秒前
5秒前
领导范儿应助尊敬乐蕊采纳,获得10
6秒前
悠嘻嘻发布了新的文献求助10
7秒前
hby完成签到,获得积分20
10秒前
11秒前
11秒前
SiRui_Wang发布了新的文献求助30
11秒前
13秒前
甜蜜代双完成签到 ,获得积分10
15秒前
16秒前
ni发布了新的文献求助10
18秒前
奇客发布了新的文献求助10
19秒前
19秒前
19秒前
lull发布了新的文献求助10
21秒前
陈明飞发布了新的文献求助10
24秒前
科研通AI5应助zoey采纳,获得10
25秒前
Hello应助1234采纳,获得10
27秒前
28秒前
28秒前
strawking完成签到,获得积分10
29秒前
31秒前
ni完成签到,获得积分10
32秒前
科研通AI5应助Kyle采纳,获得10
33秒前
CXC发布了新的文献求助10
34秒前
donk发布了新的文献求助10
35秒前
strawking发布了新的文献求助10
35秒前
35秒前
宋小七完成签到,获得积分10
36秒前
36秒前
37秒前
39秒前
xiaomeng完成签到 ,获得积分10
42秒前
和光同尘完成签到,获得积分10
48秒前
充电宝应助donk采纳,获得10
49秒前
zfj完成签到 ,获得积分10
54秒前
56秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784705
求助须知:如何正确求助?哪些是违规求助? 3329891
关于积分的说明 10243654
捐赠科研通 3045221
什么是DOI,文献DOI怎么找? 1671596
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416