RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network

计算机科学 方位(导航) 领域(数学分析) 残余物 比例(比率) 特征(语言学) 时域 人工智能 模式识别(心理学) 算法 计算机视觉 数学 数学分析 语言学 哲学 物理 量子力学
作者
Jimeng Li,Weilin Mao,Bixin Yang,Zong Meng,Kai Tong,Shancheng Yu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:243: 109854-109854 被引量:13
标识
DOI:10.1016/j.ress.2023.109854
摘要

Rolling bearings are widely used in mechanical equipment, effectively determining the failure time of rolling bearings is particularly significant to ensure the safe performance of mechanical equipment. However, in industrial scenarios, the machine mainly works in the normal state for a long time, it is difficult to accumulate the same distribution of the whole life data, but the use of different distribution of data for forecasting will reduce the performance of deep learning-based prediction methods. Therefore, in order to tackle this problem, a multi-scale convolutional parallel memory domain adaptation network is investigated to forecast the residual useful life (RUL) of bearings across working conditions. Firstly, a new characteristic extractor—multi-scale convolutional parallel memory network is designed to extract spatial and temporal characteristics of bearing degradation data. At the same time, in order to minimize the distribution difference between source domain and target domain, a temporal-spatial feature alignment strategy is proposed to obtain domain invariable characteristics by combining maximum mean difference and domain adversarial learning. Finally, the availability of the proposed approach is verified using two rolling bearing data sets. The results reveal that it can efficiently forecast the RUL of rolling bearings across working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxs完成签到,获得积分10
刚刚
xiaozhejia发布了新的文献求助10
刚刚
paul发布了新的文献求助10
刚刚
英姑应助seamuse采纳,获得10
1秒前
PGHQ完成签到,获得积分10
1秒前
fqq完成签到 ,获得积分10
1秒前
爆米花应助凄凉山谷的风采纳,获得30
2秒前
2秒前
邢虎成完成签到,获得积分10
2秒前
3秒前
qq完成签到 ,获得积分10
3秒前
3秒前
dndsb发布了新的文献求助10
4秒前
jungle完成签到,获得积分10
6秒前
6秒前
7秒前
kkkkkoi发布了新的文献求助10
8秒前
12完成签到,获得积分10
8秒前
8秒前
风中小懒虫完成签到,获得积分10
8秒前
露亮发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
Jolene完成签到 ,获得积分10
9秒前
科研通AI5应助执着瑛采纳,获得10
10秒前
风语村发布了新的文献求助10
10秒前
东方三问应助Zhang采纳,获得10
11秒前
kikiii发布了新的文献求助10
11秒前
星辰大海应助zhang采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
bathygobius完成签到,获得积分10
13秒前
13秒前
bkagyin应助冷酷以晴采纳,获得10
14秒前
12发布了新的文献求助10
14秒前
14秒前
研友_VZG64n发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065