已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Near-Optimal Evasion from Realistic Pursuers Employing Modern Linear Guidance Laws

逃避(道德) 计算机科学 法学 数学优化 数学 政治学 免疫系统 生物 免疫学
作者
Adi Mishley,Vitaly Shaferman
标识
DOI:10.2514/6.2024-2393
摘要

Target evasion is a very challenging problem because interception missiles usually have substantial agility and maneuver advantages over the target. This paper proposes near-optimal evasion strategies that exploit the two main weaknesses of the pursuer to maximize the miss distance. The first is the inherent time delay of the evader’s acceleration estimate, and the second is the pursuer’s acceleration bound. In the derivation, the evader is assumed to have perfect information on the pursuer’s states, parameters, and guidance law. The pursuer is assumed to have perfect information on the evader’s parameters and states. However, the pursuer’s estimate of the evader’s acceleration is assumed to have a pure delay. Finally, the missile and the target are assumed to have arbitrary order linear dynamics with bounded acceleration commands. The problem is posed as a bounded optimal control problem, and the necessary analytical optimality conditions in the saturated and unsaturated missile acceleration regions are derived. The problem is then solved iteratively using backward and forward propagation of the co-state and state dynamics until the solution converges. The evasion strategies are evaluated in linear, deterministic, and stochastic Monte Carlo simulations. It is shown that the proposed evasion strategies that exploit the missile’s saturation limits and estimation delay have dramatically better evasion performance than state-of-the-art evasion strategies that only exploit the estimation time delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜甜完成签到 ,获得积分10
4秒前
剑指东方是为谁应助Kurenai采纳,获得10
5秒前
邱雪辉关注了科研通微信公众号
6秒前
6秒前
7秒前
9秒前
CipherSage应助chenyiwei采纳,获得10
9秒前
Yan完成签到 ,获得积分20
10秒前
11秒前
剑指东方是为谁应助Kurenai采纳,获得10
11秒前
俊逸湘发布了新的文献求助10
14秒前
爆米花应助xymy采纳,获得10
14秒前
14秒前
幸福的雪枫完成签到 ,获得积分10
15秒前
16秒前
桐炫发布了新的文献求助10
18秒前
聂超群发布了新的文献求助10
19秒前
邱雪辉发布了新的文献求助10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
22秒前
28秒前
28秒前
爆米花应助ni采纳,获得10
32秒前
jbtjht发布了新的文献求助10
33秒前
Owen应助sunc采纳,获得10
35秒前
华仔应助洛洛采纳,获得10
38秒前
cosimo完成签到 ,获得积分10
38秒前
XXHH完成签到,获得积分10
38秒前
卫斯理关注了科研通微信公众号
39秒前
41秒前
seven完成签到 ,获得积分10
41秒前
和谐冰菱完成签到 ,获得积分10
41秒前
43秒前
科研通AI5应助奋斗含巧采纳,获得10
45秒前
47秒前
拼搏向上发布了新的文献求助100
49秒前
Akim应助儒雅寒天采纳,获得10
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784705
求助须知:如何正确求助?哪些是违规求助? 3329891
关于积分的说明 10243654
捐赠科研通 3045221
什么是DOI,文献DOI怎么找? 1671596
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416