后代
内分泌学
内科学
地塞米松
皮质酮
成骨细胞
骨质疏松症
糖皮质激素
下调和上调
胎儿
生物
医学
化学
怀孕
体外
激素
基因
生物化学
遗传学
作者
Yangfan Shangguan,Xufeng Li,Jun Qin,Yinxian Wen,Hui Wang,Liaobin Chen
标识
DOI:10.1016/j.bcp.2022.115264
摘要
Prenatal dexamethasone exposure (PDE) can lead to offspring long bone dysplasia and continue to postnatal, and this is an important cause of fetal-derived osteoporosis. Studies have confirmed that intrauterine endogenous GC overexposure mediates multiple organ dysplasia and adult-related disease susceptibility in offspring through the glucocorticoid-insulin-like growth factor1 (GC-IGF1) axis. However, it remains unknown if exogenous dexamethasone can regulate bone development in offspring through the GC-IGF1 axis. We determined that the PDE fetal rats exhibited poor osteogenic differentiation, decreased bone mass that continued to adolescence, and increased susceptibility to osteoporosis in adulthood. Concurrently, PDE decreased the serum corticosterone concentration and IGF1 expression in offspring before and after birth, while the increased serum corticosterone concentration induced by chronic stress reversed the inhibition of IGF1 expression induced by PDE. Furthermore, PDE decreased the expression of GRα and miR-130a-5p, increased HDAC4, and decreased H3K27 acetylation in the IGF1 promoter region in bone tissue, and the above changes were negatively compensated after chronic stress. In vitro, a low concentration of corticosterone inhibited the expression of GRα and miR130a-5p, upregulated the expression of HDAC4, inhibited the promoter region H3K27 acetylation, and expression of IGF1 in bone marrow mesenchymal stem cell (BMSCs) osteoblast differentiated cells and inhibited osteogenic differentiation of BMSCs. GRα overexpression, miR-130a-5p mimic treatment, or HDAC4 siRNA exposure reversed the downstream molecular alterations caused by low corticosterone concentrations. In conclusion, PDE-induced intrauterine hypoglucocorticoid exposure could positively program IGF1 expression in bone tissue through the GRα/miR-130a-5p/HDAC4 pathways, thus mediating osteogenic dysdifferentiation and adult osteoporosis susceptibility in male offspring rats.
科研通智能强力驱动
Strongly Powered by AbleSci AI