石英晶体微天平
粘附
接触角
材料科学
壳聚糖
胶粘剂
化学工程
逐层
儿茶酚
辣根过氧化物酶
透明质酸
图层(电子)
纳米技术
化学
有机化学
复合材料
生物
工程类
吸附
酶
遗传学
作者
Ana I. Neto,Ana Cibrão,Clara R. Correia,Rita R. Carvalho,Gisela M. Luz,Gloria Gallego Ferrer,Gabriela Botelho,Catherine Picart,Natália M. Alves,João F. Mano
出处
期刊:Small
[Wiley]
日期:2014-03-10
卷期号:10 (12): 2459-2469
被引量:182
标识
DOI:10.1002/smll.201303568
摘要
In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4‐dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine‐modified hyaluronic acid (HA‐DN) prepared by carbodiimide chemistry is used to form thin and surface‐adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA‐DN to form polymeric coatings using the layer‐by‐layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI