IUGR detection by ultrasonographic examinations using neural networks

胎儿体重 胎儿 生长迟缓 超声波 医学 人工神经网络 产科 计算机科学 机器学习 怀孕 放射科 生物 遗传学
作者
Fikret Gürgen,Emrah Önal,Fiisun G. Varol
出处
期刊:IEEE Engineering in Medicine and Biology Magazine [IEEE Engineering in Medicine and Biology Society]
卷期号:16 (3): 55-58 被引量:28
标识
DOI:10.1109/51.585518
摘要

This article presents a study that supports a computer-based diagnostic approach to detection of intrauterine growth retardation (IUGR). As an aid to clinical decisions, fetuses that are truly growth retarded and at risk for increased morbidity and mortality should be differentiated from those who have reached their genetic growth potential and are not at increased risk. A wide variety of mathematical formulas (or composite tables) have been proposed for the estimation of fetal weight from ultrasonographic measurements. For these formulas, the timing of the examinations to estimate fetal weight has become controversial due to the poor correlation of early results with the outcomes several weeks later, and also the technical difficulty and poor reproduction of late results. Among the attempts to improve accuracy, one may use more accurate estimated fetal-weight formulas or a single biometric parameter to identify growth abnormalities. This study confirms the following results: 1) in the ultrasound examination the prediction using multiple parameters is better than the prediction using a single parameter; 2) the experiments also show that multiple examinations give a better insight for the diagnosis of IUGR than does a single examination; 3) a neural net is a very helpful tool for correlating many variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anan完成签到,获得积分10
1秒前
Aurora关注了科研通微信公众号
2秒前
2秒前
啊蒙完成签到,获得积分10
2秒前
动如脱兔发布了新的文献求助100
2秒前
neo发布了新的文献求助10
2秒前
NexusExplorer应助独特霸采纳,获得10
2秒前
ding应助无问采纳,获得10
3秒前
奋斗雁山完成签到,获得积分10
4秒前
流川枫完成签到,获得积分10
4秒前
郭伟华完成签到,获得积分10
5秒前
科研哀完成签到,获得积分10
5秒前
5秒前
5秒前
123完成签到,获得积分10
6秒前
小马甲应助电催化领头羊采纳,获得10
6秒前
可燃冰发布了新的文献求助10
6秒前
6秒前
隐形的觅波完成签到 ,获得积分10
7秒前
明亮花生完成签到,获得积分10
7秒前
7秒前
酷波er应助善良安蕾采纳,获得10
7秒前
xuhuating发布了新的文献求助10
8秒前
8秒前
借两颗星星完成签到,获得积分10
8秒前
沅芷发布了新的文献求助10
9秒前
毛毛弟完成签到 ,获得积分10
10秒前
vvvvvirus发布了新的文献求助10
10秒前
WY完成签到,获得积分20
10秒前
10秒前
10秒前
hopen发布了新的文献求助10
11秒前
11秒前
圈圈应助汤晨阳采纳,获得10
11秒前
莫宝完成签到,获得积分10
11秒前
Alienwalker完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
陈川杰应助Natforever采纳,获得10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050741
求助须知:如何正确求助?哪些是违规求助? 3589042
关于积分的说明 11405257
捐赠科研通 3315283
什么是DOI,文献DOI怎么找? 1823686
邀请新用户注册赠送积分活动 895536
科研通“疑难数据库(出版商)”最低求助积分说明 816894