材料科学
分离器(采油)
离子
锂(药物)
化学工程
密度泛函理论
纳米技术
单层
金属
离子运输机
原子层沉积
锂离子电池的纳米结构
电流密度
图层(电子)
能量密度
枝晶(数学)
金属锂
光电子学
化学物理
大规模运输
锡
离解(化学)
钙钛矿(结构)
储能
作者
Yuying Jiao,Bixuan Li,Qian Chen,Qingwei Zhai,Zhilin Yang,Qiannan Zhang,Xiaokang Gu,Jinghan Zuo,Moxuan Wang,Yi Wei,Binyin Gao,Zhou Zhou,Bo Yang,Peng Kang,Pengbo Zhai,Yongji Gong
标识
DOI:10.1002/aenm.202502387
摘要
Abstract Designing a functional separator to accomplish selective and uniform Li + transport is critical for preventing dendrite growth and stabilizing the interface layer of the Li electrode. However, commercially modified separators still face some challenges such as sluggish ion transport dynamics and much increased weight and thickness, which significantly impairs energy density of lithium metal batteries (LMBs). Herein, cation vacancies containing Ti 0.87 O 2 monolayer nanosheets are directionally stacked into an ultrathin 145 nm Li + ‐selective transport layer. The ultrathin functional layer guarantees the low electrode‐separator interface impedance and reduces the mass of the functional layer. The abundant Li + ‐selective nanochannels induced by cation vacancies enable high‐speed and uniform Li + transport flux and a high Li + transference number (0.83), thereby promoting the dense deposition of Li metal. Consequently, the symmetric Li||Li cell exhibits stable cycling of over 3000 h at 1 mA cm −2 for 1 mAh cm −2 . Remarkably, the Li||NCM811 pouch cell delivers a high energy density of up to 450.8 Wh kg −1 and enhanced cycling lifespan. This work inspires the rational design of advanced separators with ion transport management for high energy density LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI