Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization

计算机科学 数学优化 粒子群优化 混乱的 最优化问题 趋同(经济学) 高效能源利用 水准点(测量) 能源消耗 算法 数学 人工智能 电气工程 生物 工程类 经济增长 经济 地理 生态学 大地测量学
作者
Meiqin Tang,Yalin Xin
出处
期刊:Computer Networks [Elsevier]
卷期号:100: 1-11 被引量:31
标识
DOI:10.1016/j.comnet.2016.02.010
摘要

In this paper, the trade-off between utility and energy consumption in orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) network is investigated. Energy efficiency problem is very important in the field of CR network, where the utility is maximized and the energy consumption is minimized in such a CR network. Since the trade-off between them has been paying more attentions in literature, this study summarizes the power allocation as an optimization problem that maximizes the energy efficiency via a new energy efficiency metric defined by this paper. The formulated problem is a large-scale nonconvex problem, which is very difficult to solve. In this paper, we present an improved particle swarm optimization (PSO) algorithm to solve the difficult large-scale optimization problem directly. Given the weak convergence of the original PSO around local optima, an improved version that combines the chaos theory is proposed in this study, where chaos theory can help PSO search for solutions around the personal and global bests. In addition, for the purpose of accelerating the convergence process when facing with such a large-scale optimization, the original problem is decomposed into a number of small ones by employing the coevolutionary methodology, and then divide-and-conquer strategy is used to avoid producing infeasible solutions. Simulations demonstrate that the proposed coevolution chaotic PSO needs a smaller number of iterations and can achieve more energy efficiency than the other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶茶发布了新的文献求助10
2秒前
LIZI22发布了新的文献求助10
3秒前
李旭桐完成签到,获得积分10
4秒前
李陈发布了新的文献求助10
4秒前
张泽龄完成签到 ,获得积分10
5秒前
6秒前
浮游应助瓜瓜采纳,获得10
6秒前
小小发布了新的文献求助50
7秒前
8秒前
毛毛完成签到,获得积分10
8秒前
9秒前
沃森完成签到,获得积分10
9秒前
苹果白凡完成签到,获得积分10
10秒前
hello完成签到,获得积分0
11秒前
clock完成签到 ,获得积分10
11秒前
12秒前
学术laji发布了新的文献求助10
12秒前
12秒前
Jaylou完成签到,获得积分0
13秒前
李陈完成签到,获得积分10
13秒前
小戈老师完成签到,获得积分10
16秒前
蔡菜菜发布了新的文献求助10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
慕青应助科研通管家采纳,获得10
18秒前
wwz应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
今后应助科研通管家采纳,获得10
19秒前
changping应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501