转子(电动)
材料科学
支持向量机
复合数
均方误差
平均绝对误差
机器学习
复合材料
粒子(生态学)
铝
计算机科学
相关系数
制动器
合金
径向基函数
人工智能
粒径
决定系数
功能(生物学)
近似误差
平均绝对百分比误差
机床
预测建模
盘式制动器
均方预测误差
摩擦系数
皮尔逊积矩相关系数
机械工程
直升机旋翼
算法
作者
Vikasdeep Singh Mann,B. Unhelkar,P. Reddy,Rammohan Mallipeddi
摘要
This study emphasizes the use of machine learning (ML) to optimize the design of a cost‐effective, high‐temperature, wear‐resistant composite brake rotor material. Corundum‐reinforced LM30 aluminum alloy composites were fabricated with varying particle sizes (1–20, 32–50, and 75–106 μm) and weight fractions (5–20 wt.%). Instead of relying only on experimental trials, ML models were used to capture the complex relationship between these input variables and the resulting wear properties. Among the tested models, the support vector machine with radial basis function (SVM_RBF) showed excellent predictive ability, with a correlation coefficient (CC) of 0.992, mean absolute error (MAE) of 1.666, and root mean square error (RMSE) of 2.737. The predictions revealed that smaller particle sizes and higher weight fractions significantly improve wear resistance. By leveraging ML, this study demonstrates how predictive tools can guide material design, reduce experimental cost, and accelerate the development of durable and high‐performance composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI