EXPRESS: Learning User Play-then-Pay Behaviors in Digital Games: A Dynamic Perspective

用户参与度 货币化 透视图(图形) 情感(语言学) 计算机科学 过渡(遗传学) 付款 马尔可夫链 业务 互动性 补贴 人机交互 用户体验设计 国家(计算机科学) 广告 心理学 通知 互联网隐私 消费者行为 身份(音乐)
作者
Mengzhuo Guo,Yijun Li,Xiangyang Xu,Qingpeng ZHANG,Daniel Dajun Zeng,Frank Youhua Chen
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251400467
摘要

The gaming industry has emerged as a critical force in the digital content economy, yet managing user behavior to drive sustained activity and monetization remains a complex operational challenge. In this study, we propose a two-layer Hidden Markov Model to capture users’ gameplay and payment behaviors by constructing a play-then-pay chain that links user engagement to subsequent purchase intention dynamics. Drawing on a real-world dataset, we uncover three levels of engagement states measuring the degree of stickiness with the focal game, as well as two levels of purchase intention states describing one’s willingness to pay. We find that a higher engagement state is associated with a volatile transition pattern and leads to a higher upward transition tendency in purchase intention, while low and medium engagement states tend to maintain a low purchase intention state. We also examine several factors that affect the transitions of these psychological states. The analysis reveals that user activity in same-type games enhances upward transitions only among users in the medium engagement state, without affecting users in the high engagement state, and exhibits no significant effect on purchase intentions. In contrast, user activity in different types of games has a negative effect on users in both low and high engagement states. Our state-dependent outcomes suggest that the managers’ strategies are more effective when targeted toward users with low engagement and purchase intention states. Further experimental analysis supports the effectiveness of the proposed play-then-pay chain for predicting users’ behaviors. Our policy simulation demonstrates that traffic subsidization effectively redirects user attention to the focal game, with interventions targeting different-type games yielding greater improvements in propensities for both gameplay and payment behavior compared to same-type games. Our work provides managerial implications for platform managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
61发布了新的文献求助10
1秒前
盐盐完成签到,获得积分10
2秒前
无敌鱼发布了新的文献求助10
2秒前
动人的萝发布了新的文献求助10
2秒前
3秒前
mingge发布了新的文献求助10
3秒前
Hello应助小雨大树采纳,获得10
3秒前
张晓军完成签到,获得积分10
4秒前
4秒前
KOBE发布了新的文献求助10
5秒前
我爱科研完成签到 ,获得积分10
6秒前
6秒前
木子发布了新的文献求助10
9秒前
云峰完成签到 ,获得积分10
9秒前
10秒前
漂亮的千万完成签到,获得积分10
11秒前
wanci应助研友_西门孤晴采纳,获得10
11秒前
史呆芬完成签到 ,获得积分10
11秒前
无敌鱼完成签到,获得积分10
11秒前
善学以致用应助二拾采纳,获得10
13秒前
吃狼的羊发布了新的文献求助10
13秒前
13秒前
怕孤单的平卉完成签到,获得积分10
14秒前
15秒前
丘比特应助书雪采纳,获得10
15秒前
12发布了新的文献求助10
15秒前
15秒前
明理的囧完成签到 ,获得积分10
15秒前
16秒前
白马非马完成签到 ,获得积分10
17秒前
17秒前
ZH完成签到 ,获得积分10
17秒前
Ahj完成签到,获得积分20
17秒前
61完成签到,获得积分10
17秒前
维尼完成签到,获得积分10
17秒前
小马甲应助白蓝采纳,获得10
19秒前
xdc发布了新的文献求助10
20秒前
烟花应助嬴政飞采纳,获得10
21秒前
就很j发布了新的文献求助10
21秒前
hhh给hhh的求助进行了留言
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Psychology and Work Today 1000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5830393
求助须知:如何正确求助?哪些是违规求助? 6055175
关于积分的说明 15578996
捐赠科研通 4949784
什么是DOI,文献DOI怎么找? 2667092
邀请新用户注册赠送积分活动 1612571
关于科研通互助平台的介绍 1567711