选择性
共价键
膜
合理设计
材料科学
共价有机骨架
吸附
离子
配体(生物化学)
纳米技术
水溶液中的金属离子
限制
俘获
金属有机骨架
多孔性
化学工程
选择性吸附
金属
纳米纤维
组合化学
多孔介质
气体分离
动态共价化学
水溶液
离子通道
化学
化学改性
分子
静电学
作者
Ting Jiang,Bo Jiang,Yingdi Zou,Xirui Zhao,Ningning He,Feng Yang,Yang Li,Lijian Ma
标识
DOI:10.1002/adfm.202518724
摘要
Abstract Most current strategies for targeted metal ion capture rely on a single adsorption mechanism, limiting their selectivity and precision. Synergistic regulation offers an effective solution to overcome this challenge. In this work, angstrom‐level control (16.0–20.0 Å) over the pore size of 2D covalent organic frameworks (COFs) is achieved through precise molecular‐level side‐chain engineering (R = H, OH, OMe). A novel “pore sieving‐chemical recognition” dual‐dimensional synergistic regulation strategy is proposed, revealing a reversed adsorption selectivity between Th 4+ and Pb 2+ ions. This reversal arises from the combined influence of chemical coordination and pore size exclusion, fundamentally overturning conventional ion capture trends governed solely by functional group affinity. Furthermore, the powder‐form COFs are fabricated into interwoven porous nanofiber membranes via an “electrospinning‐in situ growth” strategy. A hierarchical membrane separation system is then constructed, enabling high‐throughput and high‐precision sequential separation of Th 4+ /Pb 2+ /Ba 2+ ions under dynamic conditions. This study highlights the significant advantages of “chemical‐physical” dual‐dimensional synergistic effects in achieving precise metal ion separation and provides valuable insights for the rational design and fine‐tuning of next‐generation functional separation materials at the molecular level.
科研通智能强力驱动
Strongly Powered by AbleSci AI