Objective Assessment of Disorders of Consciousness Based on EEG Temporal and Spectral Features

脑电图 持续植物状态 意识 计算机科学 人工智能 心理学 模式识别(心理学) 神经科学 最小意识状态
作者
Wanqing Dong,Yi Yang,Tong Wu,Xiaorong Gao,Yanfei Lin,Jianghong He
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500674
摘要

Most existing studies analyzed the resting-state electroencephalogram (EEG) of DOC patients, and recent research demonstrated that the passive auditory paradigm was helpful for bedside detection of DOC and better captured sensory and cognitive responses. However, further studies of classification algorithms were needed for consciousness assessment in DOC based on task-state EEG data. In this study, EEG data from minimally conscious state (MCS) patients, vegetative state (VS) patients, and a healthy control group (HC) were collected using an auditory oddball paradigm. First, compared to the fragmented features adopted by most studies, multiple effective biomarkers for consciousness assessment in the time-frequency domains, connectivity and nonlinear dynamics were identified. Event-related potentials (ERP) results showed that MCS and VS patients exhibited lower N100 and MMN amplitudes than the HC group. Spectral analysis results indicated that VS patients had higher Delta power, and lower Alpha and Beta power than the MCS and HC groups. Second, different from insufficient classifiers in previous studies, this study systematically compared the performance of multiple machine learning and deep learning (DL) classifiers, including support vector machine (SVM), linear discriminant analysis (LDA), random forest (RF), eXtreme Gradient Boosting (XGBoost), decision tree (DT), EEGNet and ShallowConvNet. For machine learning methods, SVM and RF had an advantage in binary classification, and SVM had better performance in three-class classification. Among all individual classifiers, Shallow ConvNet had the best performance for binary and three-class classification. Moreover, an ensemble model incorporating all seven classifiers was proposed using a voting strategy, and further improved classification performance that was superior to existing studies. In addition, the importance of each feature was analyzed, identifying N100, MMN, Delta, Alpha, and Beta power as significant biomarkers of consciousness assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助糊涂的剑采纳,获得10
4秒前
翟大有完成签到 ,获得积分0
7秒前
江三村完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
13秒前
kusicfack完成签到,获得积分10
14秒前
mrwang完成签到 ,获得积分10
15秒前
SSDlk完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
21秒前
愉快的犀牛完成签到 ,获得积分10
23秒前
Yina完成签到 ,获得积分10
25秒前
25秒前
Jasper应助花花采纳,获得10
26秒前
LucyMartinez发布了新的文献求助10
27秒前
胖飞飞完成签到,获得积分10
27秒前
张晓芮完成签到 ,获得积分10
29秒前
秀丽笑容完成签到 ,获得积分10
30秒前
谨慎问雁发布了新的文献求助10
32秒前
phylicia完成签到 ,获得积分10
36秒前
科研通AI6应助LucyMartinez采纳,获得10
36秒前
Tonald Yang完成签到 ,获得积分20
40秒前
君看一叶舟完成签到 ,获得积分10
42秒前
mdie完成签到,获得积分10
45秒前
vivi完成签到 ,获得积分10
48秒前
zhang完成签到 ,获得积分10
49秒前
onevip完成签到,获得积分0
52秒前
健脊护柱完成签到 ,获得积分10
52秒前
wangfang0228完成签到 ,获得积分10
53秒前
糯米糕完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
JOY完成签到 ,获得积分10
54秒前
mzrrong完成签到 ,获得积分10
1分钟前
在水一方应助谨慎问雁采纳,获得10
1分钟前
眼睛大迎曼完成签到 ,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
活力以冬完成签到,获得积分10
1分钟前
夜闲安坐完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4881077
求助须知:如何正确求助?哪些是违规求助? 4167323
关于积分的说明 12927888
捐赠科研通 3926566
什么是DOI,文献DOI怎么找? 2155163
邀请新用户注册赠送积分活动 1173440
关于科研通互助平台的介绍 1078120