Mechanical Design in Tube Feet

机械 运动学 Lift(数据挖掘) 流体静力平衡 管(容器) 静水压力 弯曲分子几何 垂直的 扭矩 物理 几何学 地质学 结构工程 机械工程 经典力学 数学 计算机科学 工程类 量子力学 数据挖掘 热力学
作者
Olaf Ellers,Matthew J. McHenry,Amy S. Johnson
出处
期刊:Integrative and Comparative Biology [Oxford University Press]
标识
DOI:10.1093/icb/icaf102
摘要

Abstract Hydrostatic skeletons enable the transmission of mechanical work through a soft body. Despite the ubiquity of these structures among animals, we have a relatively rudimentary understanding of how they operate mechanically. Here we consider a mathematical model of the mechanics of a relatively tractable hydrostatic skeleton, the tube feet of sea stars. Tube feet drive locomotion by generating a pushing force against the environment. This pushing force is created by transmission of pressure from one chamber, the ampulla, to another, the stem, which extends from the oral surface of the body. This system operates as a compound machine with a mechanical advantage (MA, the ratio of output to input force) that varies with the geometry of its two chambers. We present an analytical approach for parameterizing the model from morphometric measurements and predictions for representative morphologies. Our analysis predicts that MA initially increases as the stem extends, but collapses to zero near maximum extension. The decrease in force output occurs because the angle of cross-helical fiber winding in the stem approaches the critical point of 54.7○, an angle at which the force components exactly balance the hoop and longitudinal forces from pressure. Though producing no axial force at full extension, a bent tube foot can still generate perpendicular forces that generate torque to lift and propel the body as the degree of bend changes, a proposition that is supported by kinematic observations of the tube feet. These results provide a framework for understanding tube foot mechanics across echinoderms and highlight the functional significance of helical fiber arrangements in hydrostatic skeletons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guohuameike发布了新的文献求助10
1秒前
2秒前
12发布了新的文献求助10
2秒前
壹懿完成签到,获得积分20
3秒前
3秒前
123发布了新的文献求助10
3秒前
今后应助继续加油吧采纳,获得10
4秒前
5秒前
yts09完成签到,获得积分10
5秒前
6秒前
7秒前
原汁原味应助gapper采纳,获得10
7秒前
LyyylaHan完成签到,获得积分10
8秒前
壹懿发布了新的文献求助30
9秒前
干净的白晴完成签到,获得积分10
10秒前
G浅浅发布了新的文献求助10
11秒前
11秒前
可爱的函函应助yts09采纳,获得10
11秒前
11秒前
12秒前
张乐完成签到,获得积分20
12秒前
13秒前
13秒前
12完成签到,获得积分10
14秒前
从容的故事完成签到,获得积分10
14秒前
脑洞疼应助LIHONG1994采纳,获得10
14秒前
orixero应助你快睡吧采纳,获得10
15秒前
田様应助Abracadabra采纳,获得10
17秒前
桐桐应助小菜鸡一枚采纳,获得10
17秒前
17秒前
18秒前
张乐发布了新的文献求助10
18秒前
小心翼翼发布了新的文献求助30
18秒前
ARESCI发布了新的文献求助10
18秒前
小猪发布了新的文献求助10
18秒前
福福完成签到,获得积分10
19秒前
panqi给panqi的求助进行了留言
19秒前
陈某人完成签到,获得积分10
19秒前
kk发布了新的文献求助20
19秒前
子车茗应助打野采纳,获得20
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4180410
求助须知:如何正确求助?哪些是违规求助? 3715810
关于积分的说明 11714301
捐赠科研通 3396571
什么是DOI,文献DOI怎么找? 1863554
邀请新用户注册赠送积分活动 921768
科研通“疑难数据库(出版商)”最低求助积分说明 833481