A sitewise model of natural selection on individual antibodies via a transformer-encoder

生物 自然选择 计算生物学 选择(遗传算法) 变压器 进化生物学 遗传学 人工智能 计算机科学 工程类 电气工程 电压
作者
F. A. Matsen,Kevin Sung,Mackenzie M. Johnson,Will Dumm,David Rich,Tyler N. Starr,Yun S. Song,Philip Bradley,Julia Fukuyama,Hugh K. Haddox
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
标识
DOI:10.1093/molbev/msaf186
摘要

During affinity maturation, antibodies are selected for their ability to fold and to bind a target antigen between rounds of somatic hypermutation. Previous work has identified patterns of selection in antibodies using B cell repertoire sequencing data. However, this work is constrained by needing to group many sequences or sites to make aggregate predictions. In this paper, we develop a transformer-encoder selection model of maximum resolution: given a single antibody sequence, it predicts the strength of selection on each amino acid site. Specifically, the model predicts for each site whether evolution will be slower than expected relative to a model of the neutral mutation process (purifying selection) or faster than expected (diversifying selection). We show that the model does an excellent job of modeling the process of natural selection on held out data, and does not need to be enormous or trained on vast amounts of data to perform well. The patterns of purifying vs diversifying natural selection do not neatly partition into the complementarity-determining vs framework regions: for example, there are many sites in framework that experience strong diversifying selection. There is a weak correlation between selection factors and solvent accessibility. When considering evolutionary shifts down a tree of antibody evolution, affinity maturation generally shifts sites towards purifying natural selection, however this effect depends on the region, with the biggest shifts toward purifying selection happening in the third complementarity-determining region. We observe distinct evolution between gene families but a limited relationship between germline diversity and selection strength.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
3秒前
坤儿完成签到,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
聪慧芷巧应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
桃子完成签到,获得积分10
4秒前
云栖完成签到,获得积分10
7秒前
XF发布了新的文献求助10
7秒前
鼓得文完成签到 ,获得积分10
8秒前
Lucas应助虞美人采纳,获得10
9秒前
丘比特应助xzy998采纳,获得200
10秒前
wws完成签到,获得积分10
10秒前
西瓜投手完成签到,获得积分10
12秒前
12秒前
kk完成签到,获得积分10
12秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Chris学长完成签到,获得积分10
16秒前
16秒前
17秒前
zz发布了新的文献求助10
17秒前
JamesPei应助Jake采纳,获得10
19秒前
故意的鲜花完成签到,获得积分20
20秒前
王肖发布了新的文献求助10
20秒前
汉堡包应助Murphy采纳,获得10
21秒前
22秒前
辉辉发布了新的文献求助10
22秒前
Tangyartie完成签到 ,获得积分10
23秒前
江峰发布了新的文献求助10
23秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209370
求助须知:如何正确求助?哪些是违规求助? 3743426
关于积分的说明 11783245
捐赠科研通 3413275
什么是DOI,文献DOI怎么找? 1872961
邀请新用户注册赠送积分活动 927564
科研通“疑难数据库(出版商)”最低求助积分说明 837133