Graph Clustering-guided Multi-view Neighborhood-enhanced Graph Contrastive Learning for Drug-Target Interaction Prediction

计算机科学 聚类分析 图形 人工智能 聚类系数 图论 机器学习 理论计算机科学 数学 组合数学
作者
Yaomiao Zhao,Shuyuan Qiao,Ning Qiao,Minghao Yin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-9
标识
DOI:10.1109/jbhi.2025.3606851
摘要

Drug-target interaction (DTI) identification is of great significance in drug development in various areas, such as drug repositioning and potential drug side effects. Although a great variety of computational methods have been proposed for DTI prediction, it is still a challenge in the face of sparsely correlated drugs or targets. To address the impact of data sparsity on the model, we propose a multi-view neighborhood-enhanced graph contrastive learning approach (MneGCL), which is based on graph clustering according to the adjacency relationship in various similarity networks between drugs or targets, to fully exploit the information of drugs and targets with few corrections. MneGCL first performs semantic clustering of drugs and targets by identifying strongly correlated nodes in the semantic similarity network to construct semantic contrastive prototypes, while simultaneously establishing phenotypic prototypes based on the Gaussian interaction profile kernel similarity. These complementary views are then combined through neighborhood-enhanced contrastive learning to effectively capture latent homogeneous features and enhance representation learning for sparse nodes in heterogeneous graphs, with final predictions generated through a graph autoencoders framework. Comparative experimental results demonstrate that MneGCL achieves superior performance across three benchmark datasets, with particularly notable improvements on the highly sparse DrugBank dataset, showing an average 2.5 % increase to baseline models. Additional experiments further validate the effectiveness of MneGCL in enriching feature representations for sparsely connected nodes. We release the code at https://github.com/ningq669/MneGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助小鲨鱼采纳,获得10
刚刚
文艺紫菜发布了新的文献求助10
1秒前
大个应助重要的汽车采纳,获得30
1秒前
深情安青应助唐白云采纳,获得10
1秒前
科研通AI6应助慈祥的鑫采纳,获得10
1秒前
zej完成签到,获得积分10
3秒前
3秒前
潇涯完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
Anna完成签到,获得积分10
7秒前
7秒前
小新给小新的求助进行了留言
7秒前
Wawoo发布了新的文献求助10
7秒前
8秒前
斯文败类应助勤奋的绝义采纳,获得10
8秒前
lorentzh发布了新的文献求助10
9秒前
茜茜公主发布了新的文献求助10
10秒前
杨辅政完成签到,获得积分20
10秒前
小二郎应助坚强南烟采纳,获得10
11秒前
852应助奋斗的孤兰采纳,获得10
11秒前
11秒前
sevenhill应助认真的蜜粉采纳,获得20
13秒前
lcy发布了新的文献求助10
13秒前
13秒前
杨辅政发布了新的文献求助10
14秒前
打打应助科研通管家采纳,获得10
14秒前
qingmoheng应助科研通管家采纳,获得10
14秒前
ZeKaWa应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
寻道图强应助科研通管家采纳,获得30
14秒前
米海椒应助科研通管家采纳,获得30
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
黄三好完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557221
求助须知:如何正确求助?哪些是违规求助? 4642435
关于积分的说明 14667964
捐赠科研通 4583782
什么是DOI,文献DOI怎么找? 2514417
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459402