分解水
制氢
双功能
超亲水性
生产(经济)
氢
材料科学
化学
化学工程
催化作用
工程类
光催化
润湿
经济
有机化学
宏观经济学
生物化学
作者
Leihuan Mu,Jiehui Li,Qinghua Liu,Yuqing Wang,Pu Feng,Hui Liu,Cai‐Li Sun,Xuedan Zhu,Jinmei He,Mengnan Qu
标识
DOI:10.1002/smtd.202501181
摘要
Abstract The urgent demand for sustainable energy has highlighted electrocatalytic water splitting as a key carbon‐neutral technology. However, nickel sulfide‐based catalysts face challenges of limited intrinsic activity and inefficient gas bubble release. Herein, a triple‐engineering strategy constructs a hierarchical Mo, V‐co‐doped NiS/Ni 3 S 2 heteronanoflower electrode in situ on nickel foam (NF) via a one‐step hydrothermal synthesis. The synergistic effects of dual‐atom doping and phase‐separated heterointerfaces not only optimize electronic structure but also confer superhydrophilic and superaerophobic surface properties, significantly enhancing both hydrogen evolution reaction (HER; 55 mV@10 mA cm −2 ) and oxygen evolution reaction (OER; 185 mV@10 mA cm −2 ) kinetics. The resulting electrocatalyst drives overall water splitting at a low cell voltage of 1.48 V. Density functional theory (DFT) calculations elucidate that Mo/V doping induces strong Ni 3d–Mo/V 3d orbital hybridization, shifting down the d‐band center and optimizing the adsorption free energies of H * and OOH * intermediates. Furthermore, experimental demonstrations confirm the feasibility of water electrolysis driven by mechanical, wind, and solar energies, introducing a novel mechanical‐to‐hydrogen energy conversion system using triboelectric nanogenerators (TENGs). This work integrates band structure modulation, interfacial engineering, and wettability regulation, advancing the design of bifunctional electrocatalysts for sustainable energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI