Uncovering Critical Causes of Highway Work Zone Accidents Using Unsupervised Machine Learning and Social Network Analysis

潜在Dirichlet分配 工作(物理) 根本原因 根本原因分析 运输工程 集合(抽象数据类型) 计算机科学 风险分析(工程) 业务 主题模型 工程类 运营管理 法律工程学 人工智能 机械工程 程序设计语言
作者
Quan Do,Tuyen Le,Chau Le
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (3) 被引量:15
标识
DOI:10.1061/jcemd4.coeng-13952
摘要

Highway work zones are essential for the preservation and improvement of the national road system. Nevertheless, these areas are reported to be among the most hazardous workplaces. Thus, it is crucial to develop appropriate measures to effectively mitigate the safety risks, which require a good understanding of the critical causes of accidents. While there are many previous studies on critical causes of construction accidents, none of them was specifically focused on highway work zones. This type of construction workplace has its own characteristics (e.g., near-passing traffic), which can lead to a unique set of critical causes of accidents. This study used text mining to extract root causes from a large narrative data set of construction accidents at work zones obtained from the Occupational Safety and Health Administration (OSHA). The study applied latent Dirichlet allocation (LDA) modeling on the text corpus to extract 12 root causes, which were subsequently classified into five groups: management, human, unsafe behavior, environmental, and material factors. In addition, social network analysis (SNA) was conducted to gain further insights into the interrelations between the root causes to determine their criticality degree. As a result, four highly ranked causes were identified: supervision dereliction of duty, weak safety awareness, poor construction environment, and risk-taking behavior. The findings of this study offer a new understanding of critical factors that highway agencies and contractors should focus on when developing construction accident prevention strategies at work zones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孟一天发布了新的文献求助10
2秒前
希望天下0贩的0应助欧阳采纳,获得10
2秒前
英姑应助DOCTORLI采纳,获得10
3秒前
KKKKK完成签到,获得积分10
3秒前
4秒前
小王完成签到,获得积分10
4秒前
4秒前
Anoxia发布了新的文献求助10
4秒前
gc发布了新的文献求助10
4秒前
6秒前
nikonikoni发布了新的文献求助10
6秒前
7秒前
Sunshine发布了新的文献求助10
8秒前
dididi发布了新的文献求助10
8秒前
科研通AI5应助阿雷采纳,获得30
8秒前
9秒前
老实的烤鸡完成签到,获得积分10
9秒前
优秀藏鸟完成签到 ,获得积分10
9秒前
9秒前
欧阳完成签到,获得积分20
10秒前
10秒前
chengli完成签到,获得积分10
11秒前
Clare发布了新的文献求助10
12秒前
飘逸的台灯完成签到,获得积分10
12秒前
12秒前
田佳峰发布了新的文献求助10
12秒前
13秒前
孟一天完成签到,获得积分10
13秒前
DOCTORLI发布了新的文献求助10
14秒前
Sunshine完成签到,获得积分10
14秒前
MIMI完成签到 ,获得积分10
14秒前
彭于晏应助lxl1996采纳,获得10
14秒前
欧阳发布了新的文献求助10
14秒前
16秒前
16秒前
小嘉完成签到,获得积分10
17秒前
吕如音发布了新的文献求助10
18秒前
wuta完成签到,获得积分10
19秒前
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947