亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning algorithms predicting bladder cancer associated with diabetes and hypertension: NHANES 2009 to 2018

医学 膀胱癌 优势比 全国健康与营养检查调查 逻辑回归 糖尿病 癌症 置信区间 算法 内科学 混淆 肿瘤科 机器学习 泌尿科 人口 内分泌学 环境卫生 计算机科学
作者
Siying Xu,Jing Huang
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (4): e36587-e36587
标识
DOI:10.1097/md.0000000000036587
摘要

Bladder cancer is 1 of the 10 most common cancers in the world. However, the relationship between diabetes, hypertension and bladder cancer are still controversial, limited study used machine learning models to predict the development of bladder cancer. This study aimed to explore the association between diabetes, hypertension and bladder cancer, and build predictive models of bladder cancer. A total of 1789 patients from the National Health and Nutrition Examination Survey were enrolled in this study. We examined the association between diabetes, hypertension and bladder cancer using multivariate logistic regression model, after adjusting for confounding factors. Four machine learning models, including extreme gradient boosting (XGBoost), Artificial Neural Networks, Random Forest and Support Vector Machine were compared to predict for bladder cancer. Model performance was assessed by examining the area under the subject operating characteristic curve, accuracy, recall, specificity, precision, and F1 score. The mean age of bladder cancer group was older than that of the non-bladder cancer (74.4 years vs 65.6 years, P < .001), and men were more likely to have bladder cancer. Diabetes was associated with increased risk of bladder cancer (odds ratio = 1.24, 95%confidence interval [95%CI]: 1.17-3.02). The XGBoost model was the best algorithm for predicting bladder cancer; an accuracy and kappa value was 0.978 with 95%CI:0.976 to 0.986 and 0.01 with 95%CI:0.01 to 0.52, respectively. The sensitivity was 0.90 (95%CI:0.74-0.97) and the area under the curve was 0.78. These results suggested that diabetes is associated with risk of bladder cancer, and XGBoost model was the best algorithm to predict bladder cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助健壮的鑫鹏采纳,获得10
11秒前
24秒前
上岸完成签到,获得积分10
27秒前
上岸发布了新的文献求助10
31秒前
daguan完成签到,获得积分10
39秒前
不吃鸡蛋发布了新的文献求助20
49秒前
ningyan完成签到,获得积分10
53秒前
leoott完成签到,获得积分10
56秒前
丘比特应助喜悦的如娆采纳,获得10
1分钟前
lsfgz111完成签到 ,获得积分10
1分钟前
1分钟前
lj发布了新的文献求助10
1分钟前
浮游应助lj采纳,获得10
1分钟前
YH完成签到,获得积分10
1分钟前
1分钟前
1分钟前
欣喜的尔烟完成签到 ,获得积分10
1分钟前
SciGPT应助小天采纳,获得10
1分钟前
久久丫完成签到 ,获得积分10
1分钟前
上善若水完成签到 ,获得积分10
1分钟前
不吃鸡蛋完成签到,获得积分20
1分钟前
ningyan发布了新的文献求助10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
LUYAO1完成签到 ,获得积分10
2分钟前
嘀嘀菇菇完成签到 ,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
科研通AI6应助123采纳,获得10
2分钟前
健壮的鑫鹏完成签到,获得积分10
2分钟前
Ellen完成签到 ,获得积分10
2分钟前
天天天晴完成签到 ,获得积分10
3分钟前
3分钟前
酷波er应助ll采纳,获得30
3分钟前
和谐青文完成签到 ,获得积分10
3分钟前
喜悦的小土豆完成签到 ,获得积分10
3分钟前
3分钟前
忧伤的二锅头完成签到 ,获得积分10
3分钟前
小天发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459001
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297192
捐赠科研通 4489949
什么是DOI,文献DOI怎么找? 2459427
邀请新用户注册赠送积分活动 1449081
关于科研通互助平台的介绍 1424578