Machine learning for multi-dimensional performance optimization and predictive modelling of nanopowder-mixed electric discharge machining (EDM)

电火花加工 机械加工 参数统计 机械工程 SPARK(编程语言) 材料科学 人工神经网络 响应面法 过程(计算) 电压 工程类 计算机科学 机器学习 电气工程 程序设计语言 操作系统 统计 数学
作者
Muhammad Sana,Muhammad Asad,Muhammad Umar Farooq,Saqib Anwar,Muhammad Talha
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:130 (11-12): 5641-5664 被引量:36
标识
DOI:10.1007/s00170-024-13023-x
摘要

Abstract Aluminium 6061 (Al6061) is a widely used material for various industrial applications due to low density and high strength. Nevertheless, the conventional machining operations are not the best choice for the machining purposes. Therefore, amongst all the non-conventional machining operations, electric discharge machining (EDM) is opted to carry out the research due to its wide ability to cut the materials. But the high electrode wear rate (EWR) and high dimensional inaccuracy or overcut (OC) of EDM limit its usage. Consequently, nanopowder is added to the dielectric medium to address the abovementioned issues. Nanopowder mixed EDM (NPMEDM) process is a complex process in terms of performance predictability for different materials. Similarly, the interactions between the process parameters such as peak current ( I p ), spark voltage ( S v ), pulse on time ( P on ) and powder concentration ( C p ) in dielectric enhance the parametric sensitivity. In addition, the cryogenic treatment (CT) of electrodes makes the process complex limiting conventional simulation approaches for modelling inter-relationships. An alternative approach requires experimental exploration and systematic investigation to model EWR and overcutting problems of EDM. Thus, artificial neural networks (ANNs) are used for predictive modelling of the process which are integrated with multi-objective genetic algorithm (MOGA) for parametric optimization. The approach uses experimental data based on response surface methodology (RSM) design of experiments. Moreover, the process physics is thoroughly discussed with parametric effect analysis supported with evidence of microscopic images, scanning electron microscopy (SEM) and 3D surface topographic images. Based on multi-dimensional optimization results, the NT brass electrode showed an improvement of 65.02% in EWR and 59.73% in OC using deionized water. However, CT brass electrode showed 78.41% reduction in EWR and 67.79% improved dimensional accuracy in deionized water. In addition to that, CT brass electrode gave 27.69% less EWR and 81.40% improved OC in deionized water compared to kerosene oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liang应助活力惜海采纳,获得10
刚刚
李爱国应助徐小采纳,获得10
刚刚
聪明蛋挞应助xy采纳,获得10
刚刚
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
2秒前
shi hui应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
Shangguan应助哈哈哈哈采纳,获得20
4秒前
4秒前
4秒前
黄湘发布了新的文献求助10
5秒前
6秒前
ASDq完成签到,获得积分20
6秒前
6秒前
包容的葵阴完成签到,获得积分10
6秒前
6秒前
花痴的香菇完成签到,获得积分10
8秒前
17ayyy发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
聂璐燕完成签到,获得积分20
9秒前
LeonPrisig发布了新的文献求助10
9秒前
mc应助tingting采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5437148
求助须知:如何正确求助?哪些是违规求助? 4548962
关于积分的说明 14217639
捐赠科研通 4469376
什么是DOI,文献DOI怎么找? 2449505
邀请新用户注册赠送积分活动 1440407
关于科研通互助平台的介绍 1416830