Diagnostic potential of energy metabolism-related genes in heart failure with preserved ejection fraction

射血分数保留的心力衰竭 生物标志物 医学 基因表达 计算生物学 基因 心力衰竭 内科学 生物信息学 射血分数 生物 遗传学
作者
Qiling Gou,Qianqian Zhao,Mengya Dong,Liang Liu,Hongjun You
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1296547
摘要

Background Heart failure with preserved ejection fraction (HFpEF) is associated with changes in cardiac metabolism that affect energy supply in the heart. However, there is limited research on energy metabolism-related genes (EMRGs) in HFpEF. Methods The HFpEF mouse dataset (GSE180065, containing heart tissues from 10 HFpEF and five control samples) was sourced from the Gene Expression Omnibus database. Gene expression profiles in HFpEF and control groups were compared to identify differentially expressed EMRGs (DE-EMRGs), and the diagnostic biomarkers with diagnostic value were screened using machine learning algorithms. Meanwhile, we constructed a biomarker-based nomogram model for its predictive power, and functionality of diagnostic biomarkers were conducted using single-gene gene set enrichment analysis, drug prediction, and regulatory network analysis. Additionally, consensus clustering analysis based on the expression of diagnostic biomarkers was utilized to identify differential HFpEF-related genes (HFpEF-RGs). Immune microenvironment analysis in HFpEF and subtypes were performed for analyzing correlations between immune cells and diagnostic biomarkers as well as HFpEF-RGs. Finally, qRT-PCR analysis on the HFpEF mouse model was used to validate the expression levels of diagnostic biomarkers. Results We selected 5 biomarkers (Chrna2, Gnb3, Gng7, Ddit4l, and Prss55) that showed excellent diagnostic performance. The nomogram model we constructed demonstrated high predictive power. Single-gene gene set enrichment analysis revealed enrichment in aerobic respiration and energy derivation. Further, various miRNAs and TFs were predicted by Gng7, such as Gng7-mmu-miR-6921-5p, ETS1-Gng7. A lot of potential therapeutic targets were predicted as well. Consensus clustering identified two distinct subtypes of HFpEF. Functional enrichment analysis highlighted the involvement of DEGs-cluster in protein amino acid modification and so on. Additionally, we identified five HFpEF-RGs (Kcnt1, Acot1, Kcnc4, Scn3a, and Gpam). Immune analysis revealed correlations between Macrophage M2, T cell CD4+ Th1 and diagnostic biomarkers, as well as an association between Macrophage and HFpEF-RGs. We further validated the expression trends of the selected biomarkers through experimental validation. Conclusion Our study identified 5 diagnostic biomarkers and provided insights into the prediction and treatment of HFpEF through drug predictions and network analysis. These findings contribute to a better understanding of HFpEF and may guide future research and therapy development.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian19998发布了新的文献求助10
1秒前
Labubububu发布了新的文献求助10
2秒前
Ava应助咻咻采纳,获得10
3秒前
糊涂的萍发布了新的文献求助10
4秒前
情怀应助aosiyi采纳,获得10
7秒前
自觉雨文发布了新的文献求助10
8秒前
搜集达人应助tian19998采纳,获得10
8秒前
8秒前
ll发布了新的文献求助30
8秒前
gzhoax完成签到,获得积分10
9秒前
领导范儿应助xx采纳,获得10
10秒前
11秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
lizishu应助科研通管家采纳,获得10
12秒前
lizishu应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
搜集达人应助满意白卉采纳,获得30
12秒前
12秒前
13秒前
小鬼发布了新的文献求助10
14秒前
niu完成签到,获得积分10
15秒前
lilyvan完成签到 ,获得积分10
16秒前
易止完成签到 ,获得积分10
16秒前
joysa完成签到,获得积分10
17秒前
小白哥发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
上好佳发布了新的文献求助10
19秒前
乐乐应助hhhhhhhh采纳,获得10
21秒前
21秒前
keyan完成签到,获得积分10
21秒前
aosiyi发布了新的文献求助10
23秒前
23秒前
cdercder发布了新的文献求助10
23秒前
xx发布了新的文献求助10
23秒前
24秒前
暗夜星辰应助苍刺采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623