A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system

工件(错误) 计算机科学 噪音(视频) 颗粒过滤器 滤波器(信号处理) 计算机视觉 人工智能 算法 信号(编程语言) 可穿戴计算机 嵌入式系统 图像(数学) 程序设计语言
作者
Ma Min,Mingrui Du,Qiuyue Feng,Shiji Xiahou
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (1) 被引量:2
标识
DOI:10.1063/5.0153241
摘要

With the evolution of wearable systems, more and more people tend to wear wearable devices for health monitoring during sports. However, a large amount of motion artifact noise is introduced at this time, which is difficult to filter out due to its stochasticity. The amplitude and characteristics of motion artifact noise vary with changes in motion intensity. In order to filter out the motion artifact noise, the paperproposes a new particle algorithm, which can detect the intensity of the motion artifact for adaptive filtering, especiallysuitable for wearable health monitoring systems. In this algorithm, variational mode decomposition was first introduced to analyze the noisy electrocardiogram (ECG) signal in order to find the clean components. Then, the Laguerre estimation technique was applied to obtain an accurate ECG polar model. Taking this model as the state equation, a particle filter algorithm was defined to filter out the motion artifact noise. In the particle filter algorithm, we defined a parameter γ whose values were obtained from the six-axis data of motion sensor MPU6050 in our wearable device. This parameter γ could reflect the current noise levels and adaptively update the particle weights. Finally, some exercise experiments proved that the parameter γ could map the motion artifacts in real time and also demonstrated the superiority of the algorithm in terms of signal-to-noise ratio improvement and error reduction compared to other algorithms. The new particle filter algorithm proposed in this paper combines the six-axis data (three-axis accelerometer and three-axis gyroscope) with the ECG signal to effectively eliminate a large amount of motion artifact noise, thus solving the problem of excess noise from wearable devices when people are exercising, allowing them to accurately obtain real-time ECG health information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mm完成签到,获得积分10
2秒前
冰魂应助可耐的雁凡采纳,获得10
3秒前
哦哦哦完成签到 ,获得积分10
3秒前
神秘玩家发布了新的文献求助10
3秒前
动漫大师发布了新的文献求助10
3秒前
CipherSage应助瑞曦采纳,获得10
4秒前
163发布了新的文献求助10
5秒前
陈雷应助Zyan采纳,获得10
6秒前
乐开欣完成签到 ,获得积分10
6秒前
科研通AI5应助鱼会淹死吗采纳,获得10
6秒前
11秒前
XX完成签到 ,获得积分10
12秒前
养乐多完成签到 ,获得积分10
13秒前
相安完成签到,获得积分10
15秒前
啊啊啊发布了新的文献求助10
16秒前
陌上花开完成签到,获得积分0
17秒前
17秒前
打打应助夏如月光采纳,获得10
17秒前
21秒前
21秒前
科研通AI5应助Ian采纳,获得10
22秒前
24秒前
博修发布了新的文献求助10
26秒前
Milou发布了新的文献求助10
27秒前
27秒前
yunpeng发布了新的文献求助10
27秒前
28秒前
瑞曦发布了新的文献求助10
29秒前
晓生完成签到,获得积分10
29秒前
cdercder应助科研通管家采纳,获得10
30秒前
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
30秒前
李健应助科研通管家采纳,获得10
31秒前
Thien应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445