亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks with domain decomposition for the incompressible Navier–Stokes equations

物理 纳维-斯托克斯方程组 压缩性 领域(数学分析) 流量(数学) 区域分解方法 人工神经网络 不可压缩流 趋同(经济学) 偏微分方程 应用数学 机械 数学分析 热力学 人工智能 有限元法 数学 经济 量子力学 经济增长 计算机科学
作者
Linyan Gu,Shanlin Qin,Lei Xu,Rongliang Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:14
标识
DOI:10.1063/5.0188830
摘要

Physics-informed neural network (PINN) has emerged as a promising approach for solving differential equations in recent years. However, their application to large-scale complex problems has faced challenges regarding accuracy and efficiency. To address these limitations, domain decomposition has gained popularity as an effective strategy. This paper studies a domain decomposition PINN method for solving incompressible Navier–Stokes equations. We assess the method's predicted accuracy, convergence, and the impact of different strategies on performance. In the domain decomposition PINN method, individual PINN is employed for each subdomain to compute local solutions, which are seamlessly connected by enforcing additional continuity conditions at the interfaces. To improve the method's performance, we investigate various continuity conditions at the interfaces and analyze their influence on the predictive accuracy and interface continuity. Furthermore, we introduce two approaches: the dynamic weight method and a novel neural network architecture incorporating attention mechanisms, both aimed at mitigating gradient pathologies commonly encountered in PINN methods. To demonstrate the effectiveness of the proposed method, we apply it to a range of forward and inverse problems involving diverse incompressible Navier–Stokes flow scenarios. This includes solving benchmark problems such as the two-dimensional (2D) Kovasznay flow, the three-dimensional (3D) Beltrami flow, the 2D lid-driven cavity flow, and the 2D cylinder wake. Additionally, we conduct 3D blood flow simulations for synthetic flow geometries and real blood vessels. The experimental results demonstrate the capability and versatility of the domain decomposition PINN method in accurately solving incompressible Navier–Stokes flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
souther完成签到,获得积分0
9秒前
decade发布了新的文献求助10
10秒前
15秒前
领导范儿应助ccj采纳,获得10
19秒前
19秒前
decade完成签到,获得积分10
23秒前
45秒前
SisiZheng完成签到,获得积分20
47秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
俭朴的乐巧完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
行走完成签到,获得积分10
2分钟前
大模型应助坚强的冰淇淋采纳,获得10
2分钟前
3分钟前
3分钟前
安详的惜梦完成签到 ,获得积分10
3分钟前
杰杰完成签到,获得积分20
3分钟前
3分钟前
杰杰发布了新的文献求助30
3分钟前
3分钟前
Orange应助咖啡酸醋冰采纳,获得10
3分钟前
猫小猪发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ccj发布了新的文献求助10
3分钟前
丘比特应助猫小猪采纳,获得10
3分钟前
可罗雀完成签到,获得积分10
3分钟前
3分钟前
猫小猪完成签到,获得积分10
4分钟前
奋斗人雄完成签到,获得积分10
4分钟前
4分钟前
科研通AI5应助苏东湾仔采纳,获得10
4分钟前
4分钟前
4分钟前
Wyatt发布了新的文献求助10
4分钟前
lucky完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4269901
求助须知:如何正确求助?哪些是违规求助? 3800533
关于积分的说明 11910717
捐赠科研通 3447417
什么是DOI,文献DOI怎么找? 1890963
邀请新用户注册赠送积分活动 941700
科研通“疑难数据库(出版商)”最低求助积分说明 845796