已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lithium-ion battery state of health estimation method based on variational quantum algorithm optimized stacking strategy

堆积 过度拟合 电池(电) 均方误差 量子 算法 健康状况 锂离子电池 计算机科学 数学优化 物理 人工智能 数学 量子力学 统计 人工神经网络 化学 功率(物理) 有机化学
作者
Longze Wang,Siyu Jiang,Yuteng Mao,Zhehan Li,Yan Zhang,Meicheng Li
出处
期刊:Energy Reports [Elsevier BV]
卷期号:11: 2877-2891 被引量:3
标识
DOI:10.1016/j.egyr.2024.02.034
摘要

Accurate state-of-health (SOH) estimation is critical for the performance and safety of lithium-ion batteries. An innovative method for SOH estimation is proposed by employing a variational quantum algorithm to optimize a stacking integrated learning strategy. The strategy effectively combines multiple model advantages, enhancing the estimation accuracy and generalizability. Using this method, eight sets of health factors are extracted, focusing on the relationship between battery capacity degradation and electrothermal parameters. A stacking integrated learning framework is developed by utilizing diverse primary learners to effectively capture the dynamic changes in health factors. A ridge regression meta-learner is incorporated to address overfitting problems found in primary learners. A significant innovation is the integration of a variational quantum circuit module as the primary learner. This module plays a crucial role in optimizing the hyperparameters for the analysis of complex and high-dimensional battery data. The effectiveness of the method is validated using four different types of batteries, showing a 77.4% improvement in prediction accuracy compared with traditional methods, with the SOH estimation error maintained within a tight margin of 0.67%. The mean absolute error, mean absolute percentage error, and root mean square error with maximum reduction rates are 76.7%, 77.4%, and 62.7%, respectively. The maximum increase in the R-squared coefficient is 5.3%. This study demonstrates the potential of variational quantum algorithms in enhancing the SOH estimation accuracy and opens new possibilities for the advanced health status management of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
abb完成签到 ,获得积分10
6秒前
6秒前
Zzzzz完成签到,获得积分10
6秒前
孤独秋发布了新的文献求助10
8秒前
王晓宇完成签到,获得积分10
8秒前
9秒前
无花果应助边港洋采纳,获得10
9秒前
10秒前
11秒前
qianyuan发布了新的文献求助10
12秒前
iu1392发布了新的文献求助10
13秒前
1MENINA1完成签到 ,获得积分10
14秒前
Zzzzz发布了新的文献求助10
14秒前
14秒前
16秒前
juziyaya发布了新的文献求助50
17秒前
19秒前
20秒前
边港洋发布了新的文献求助10
23秒前
科研通AI5应助lstj6675采纳,获得10
24秒前
jrxjzy完成签到 ,获得积分10
24秒前
26秒前
纵坐标完成签到 ,获得积分10
26秒前
28秒前
小6s完成签到,获得积分10
30秒前
riccixuu完成签到 ,获得积分10
31秒前
33秒前
小小铱发布了新的文献求助30
33秒前
不解释发布了新的文献求助10
33秒前
孙Tuan完成签到,获得积分10
37秒前
可爱的函函应助iu1392采纳,获得10
38秒前
PAD完成签到,获得积分10
40秒前
小马甲应助无奈的小松鼠采纳,获得10
41秒前
JamesPei应助无奈的小松鼠采纳,获得10
41秒前
41秒前
CipherSage应助无奈的小松鼠采纳,获得10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343727
关于积分的说明 10317463
捐赠科研通 3060505
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295